
TQL Editor User Guide V4.7.2 Page 1

TQL Editor User Guide

Version 4.8

Introduction

The DTS Terminology Query Language (TQL) is a language for expressing statements (queries) that

manipulate or export information found in the DTS Knowledgebase. TQL provides an alternative to

direct API programming for more easily performing many common DTS maintenance, Q/A, and

output tasks. The TQL Editor, available as both a DTS plug-in and standalone application, permits the

creation, editing, saving and interactive execution of TQL queries. A TQL Class is also available to

permit execution of queries from batch files and Java applications.

This TQL Editor User Guide provides a comprehensive description of the TQL Language and the

operation of the TQL Editor. The TQL Reference Guide, also in the distribution kit, is a quick

reference for TQL syntax formatted as a concise double-sided “trifold”. For previous users of TQL, the

TQL V4.7.1 Release Notes are recommended as a brief update on new features.

The TQL Commander is a companion application for running parameterized TQL queries. See the

Parameterized Queries section below for information on creating of parameterized queries. For

instructions on using TQL Commander, see the TQL Commander User Guide.

Installation

Extract the files in TQLEditor-4.8.zip into your DTSInstall directory. Be sure the Use folder

names box is checked. This will place all the TQL Editor files into the appropriate folders:

Folder Files
DTSInstall\bin\tqleditor TQLEditor.bat

TQLCommander.bat

 TQL.bat

 thesaurus-schema-v5.xsd

 extension-schema-v5.xsd

 ontylog-schema-V5.xsd

 subset-schema-v4.xsd

TQL 4.5 Javadoc.zip

DTSInstall\lib\modules tqleditor.jar

pluginutils.jar

xmldigester.jar

poi-3.6-20091214.jar

poi-ooxml-3.6-20091214.jar

poi-ooxml-schemas-3.6-20091214.jar

DTSInstall\docs tqleditoruserguide.pdf
tqlcommanderuserguide.pdf

TQL V4.7.1 Release Notes.pdf

TQL V4.7.1 Reference Guide.pdf

DTSInstall\docs\help tqleditoruserguide.htm

 tqlcommanderuserguide.htm

TQL Editor User Guide V4.7.2 Page 2

As desired, edit TQLEditor.bat, which runs the TQL Editor as a standalone application, TQL.bat,

which runs TQL specification files in batch mode, and TQLCommander.bat, which runs the TQL

Commander application, to accommodate your particular DTS environment.

Operation

TQL queries are sequences of English-like statements that permit the display, modification and export

of DTS Knowledgebase information. TQL applications support the creation and/or execution of TQL

queries. The primary TQL applications are:

• The TQL Editor, used to interactively create, maintain, and execute TQL queries. The TQL

Editor is available as both a DTS Editor Module and a standalone application (accessed by

running TQLEditor.bat from the DTSInstall\bin\tqleditor folder). The TQL Editor

(and the TQL Commander) can be invoked via icons on the toolbar in the standard DTS

Editor layout and as floating panels by selecting Tools|New TQL Editor (and

Tools|New TQL Commander) from the menu bar. TQL implements the DTS V4 Module

Architecture and can be used in custom DTS Editor layouts.

• The TQL Class, used to execute TQL query strings from either batch files or Java

applications via the TQL API. For further information, see Using the TQL Class later in this

Guide.

The following sections describe TQL and discuss how to create and run a TQL query using the TQL

Editor.

TQL Editor User Guide V4.7.2 Page 3

The Terminology Query Language

Overview

A TQL query is a sequence of structured statements that describe a desired action on DTS terminology

objects. There are thirteen types of statements and each statement type may have multiple forms. The

statements are:

• The collection-statement which collects a set of Concepts or Terms for use by subsequent

(subordinate) statements.

• The conditional-statement which supports conditional execution of statements based on the

result of a boolean expression. The conditional-statement implements the familiar IF/ELSE

construct used in other programming languages.

• The create-context-statement which creates contexts, or named groups, of Concepts. Statement

forms are available to create DTS Namespaces, Subsets and Authorities. Additional forms

create the TQL-specific contexts ConSets and TermSets: local files that can reference sets of

Concepts and Terms.

• The delete-context-statement which deletes DTS and TQL contexts: Namespaces, Subsets,

Authorities, ConSets and TermSets.

• The rename-context-statement which renames DTS Namespaces, Subsets, and Authorities.

• The edit-statement which modifies existing DTS Knowledgebase information. Forms are

available to create and delete Concepts and Terms, and add, update and delete Concept and

Term Attributes.

• The export-statement which creates an export file (or list) of Concept and Term Attribute

values. Delimited text (.txt), Excel (.xls and .xlsx), and XML (.xml) output formats are

supported. Some forms of the export-statement export the complete contents of a Namespace,

or definition of a Subset, to XML files. These files can be used for backup or exchange

purposes.

• The for-statement which allows iteration of its scope over instances of a DTS attribute.

• The output-statement which adds messages to the log or export data streams.

• The set-variables-statement which sets the values of internal TQL variables.

• The read-statement which allows the operations in a query to be directed by values in an

external file.

• The constrain-statement and parameter-statement that define the use of parameters in TQL

queries.

In the sections that follow, TQL statement types, forms, and element names are shown in italics, and

element keywords are shown in CAPITALS. Brackets enclose optional TQL elements, vertical bars

denote alternation (alternate element forms), and literal characters are enclosed in quote marks. The

brackets, vertical bars, and quotes are not part of the TQL statement. When writing a query, keywords

may be entered in any case and any amount of whitespace (including spaces, tabs and returns) can be

placed between TQL statements, keywords and elements to improve readability. Either single or

double quotes can be used to enclose string literals in statements, and within a literal, the backslash

character, “\” can be used to escape both quote marks (“\”” and ‘\’’), the tab character (“\t”) and itself

(“\\”). TQL also supports escaping the caret (“^”) so that this character can appear in Namespace,

Subset and Attribute names. Finally, note that every TQL statement must end in a semicolon.

TQL Editor User Guide V4.7.2 Page 4

The TQL is formally described via the simplified BNF grammar given in Appendix A. As an example

of this BNF, the “production rule” (definition) of a TQL query is:

query := statement [query]

This is read as “a query is a statement, optionally followed by another query”, i.e., a query is a

sequence of any number of statements.

Similarly, a statement is defined as one of the statement types (using the vertical bar to denote

alternation):

statement := collection-statement |

 conditional-statement |

create-context-statement |

 delete-context-statement |

 rename-context-statement |

edit-statement |

 export-statement |

for-statement |

 output-statement |

 set-variables-statement |

 read-statement |

 parameter-statement |

constrain-statement |

“A statement is a collection-statement, or a conditional-statement, or …”

Statement Classifications

Certain statements may only be used in specific locations in a query or in conjunction with other

statements. An unrestricted statement can appear anywhere in a query, including within the scope of

another statement. A contextual statement is dependent on a context; it must appear in the scope of a

collection-statement (see The Collection Statement section below for details). Contextual statements,

in turn, can be unrestricted or restricted. An unrestricted contextual statement can occur anywhere in

the scope of its enclosing collection-statement and appear at any nesting level (see The Collection

Statement and The Conditional Statement sections below for details on nested statements). Multiple

unrestricted contextual statements can be present in the scope. Similarly, restricted contextual

statements can occur anywhere in the scope and appear at any nesting level, but there can be ONLY

ONE restricted contextual statement in the scope and NO unrestricted contextual statements may

appear in the scope. Finally, a non-contextual statement can appear anywhere EXCEPT in the scope of

a collection-statement. While there are exceptions, non-contextual statements usually only appear at

the top level of a query, i.e., not within the scope of another statement.

Some statements can be used in multiple positions, often dependent on the statements’ arguments. See

Table 1 below and the individual statement sections for further information.

TQL Editor User Guide V4.7.2 Page 5

Table 1 – TQL Statement Classifications

Statement Classification Notes

collection-statement Non-contextual

conditional-statement Unrestricted contextual

create-context-statement Non-contextual

delete-context-statement Non-contextual

rename-context-statement Non-contextual

edit-statement Contextual Restricted and unrestricted forms

export-statement Restricted contextual Some collection restrictions

for-statement Unrestricted contextual

output-statement Unrestricted and

unrestricted contextual

Arguments must be consistent with

statement usage

set-variables-statement Unrestricted

read-statement Unrestricted

parameter-statement Non-contextual

constrain-statement Non-contextual

Common Elements

Most TQL statements use one or more instances of common TQL elements. These elements are

described in the sections below.

The Variable Element

Variables are named, value-holding query elements. Both TQL internal variables (TQL Variables and

Read Variables) and user-defined variables (User Variables) are available. TQL Variables are pre-

defined (always present) and their values affect processing of related statements. Table 6 list these

variables, where they are used, and their effects. Most TQL Variables can be assigned values via the

set-variables-statement, or through selected command modifiers. Read Variables are created as a side-

effect of the read-statement (see The Read Statement section below for further information). User

Variables are local to a particular query and have names that begin with the percent (“%”) character.

User Variables are created and assigned values by the set-variables-statement. Once defined, they can

subsequently be used in expressions (see The Expression Element section below).

The Attribute Element

Attributes are elements that refer to objects in the DTS Knowledgebase. Attributes include TQL

Attributes, described in Table 2 TQL Attribute Keywords, DTS element names, direct attributes,

and indirect attributes, forms that combine attributes.

Direct attributes name a DTS Concept or Term Type Attribute, specifically a DTS Synonym Type,

Property Type, Role Type or Concept Association Type, or a qualified DTS Property Type or Concept

Association Type (using the syntax PROPORASSN_TYPE.QUALIFIER_TYPE). Defining Concepts,

Defining Roles, Inverse Roles and Inverse Concept Association Types can also be specified. Note that

TQL Editor User Guide V4.7.2 Page 6

throughout TQL, caret (“^”) bracketing is required around any explicit reference to the name of an

attribute that contains any character other than letters, digits and underscores: ^My Property^.

Indirect attributes are supported in certain contexts such as selectors and export-statement arguments.

An indirect attribute consists of a Concept-valued source attribute (CONCEPT, PARENT, CHILD,

ROLE, ASSOCIATION, INV SYNONYM, DEFINING CONCEPT, DTS Role Type, DTS Concept

Association Type or inverse DTS Synonym Type), the “referencing” operator “->”, and any string-

valued target attribute (for example a Concept Property) of the attribute’s source Concept. The

resulting combined attribute refers to the instance of the target attribute associated with the value of

the source attribute. For example:

PARENT->^Code in Source^

refers to the Code in Source Property of the referent Concept’s Parent. Valid target attributes for this

“referencing” syntax are:

• CONCEPT_NAME or NAME,

• CONCEPT_CODE or CODE,

• CONCEPT_ID or ID,

• CONCEPT_STATUS or STATUS,

• QUALIFIED_NAME,

• PREFERRED_NAME,

• RESOLVED_NAME,

• PRIMITIVE,

• NAMESPACE, and

• Concept and Term Property Type (including anonymous Property Types)

By default, attribute references refer to attributes in the current context namespace. As necessary, an

attribute can be associated with a specific namespace by placing the attribute’s namespace name in

brackets after the attribute name: ^My Property[MySpace]^. If the current context is a Subset,

ConSet, TermSet or All Namespace (ALL WITH … form) context, a non-namespace-qualified

attribute is called an anonymous attribute. The type (actual instance) of an anonymous attribute is not

resolved until run-time and is determined relative to the namespace of the current concept (or term) in

the collection. In these statements:

FROM ALL WITH NAME EQUALS “XY*” EXPORT NAME, ^Code in Source^;

FROM {MySubset} EXPORT NAME, ^Code in Source^;

for each selected concept, the existence of a Code in Source Concept Property Type from the

concept’s namespace is determined and if present, it’s value, if any, on the concept is exported.

For an indirect attribute, if the source attribute references a Concept in a different Namespace, for

example, a mapping Concept Association Type, any target Property Type must be qualified with the

target Namespace to disambiguate the attribute, e.g.:

^Map to SNOMED CT^->^Code in Source[SNOMED CT]^

TQL Editor User Guide V4.7.2 Page 7

Since two DTS Attributes can have the same name, but be of different types, e.g., a Property Type and

an Association Type having the same name, TQL provides a syntax to disambiguate these names. The

type of an attribute can be specified by post-fixing an attribute reference with a type code in

parenthesis. Thus, ^MyAttribute[Demo]^(CP) forces MyAttribute to be interpreted as a Concept

Property Type in the Demo Namespace. The following type codes are supported:

P or CP Concept Property Type

TP Term Property Type

A or CA Concept Association

TA Term Association

SA Synonym Association

R Role

PQ or CPQ Concept Property Qualifier

TPQ Term Property Qualifier

AQ or CAQ Concept Association Qualifier

TAQ Term Association Qualifier

TQL cannot know the type of an anonymous attribute, so anonymous attributes usually have a type

code specified. If no type is specified, Concept Property Type is used as described in the above

examples.

The Function Element

Like variables, TQL supports both TQL Functions and User Functions. Functions take a single

argument and return a string value. The function argument can be certain TQL Attributes (see Table 2)

and qualified or unqualified direct attributes. Extended attribute forms, i.e., the “encoded” and

“referencing” forms, are not permitted. Functions can be used as selectors, predicates and in

expressions when contextual expression-elements are permitted. When used as a selector or a

predicate, if a function can return multiple values, e.g., LENGTH(CHILD) EQUALS 3, an “if any”

condition is applied to the selector or predicate test. Table 5 describes the available TQL Functions.

A User Function, identified by a function whose name begins with a percent sign (“%”), is a user-

developed extension to TQL. For example, the %REVERSE(arg) function might return the string value

of its argument with the characters reversed. A User Function is created by writing a Java class that

implements the TQLFunction class. This class, packaged in a jar file and placed in the lib\modules

folder, is recognized by TQL on start-up and can subsequently be used in expressions in the same way

as a TQL Function. See Appendix D - Writing a User Function for further information.

The Expression Element

The expression element is used as part of a selector in a collection, part of a predicate in a conditional-

statement, or in an edit-statement, set-variables-statement, export-statement, output-statement, or

constrain-statement. An expression is evaluated at query run-time to produce a string value.

Syntactically, an expression is a sequence of expression-elements separated by expression-operators.

An expression-element can be a numeric literal (12.34), string literal (“confirmed by”), a TQL Variable

TQL Editor User Guide V4.7.2 Page 8

(AXIS), a Read Variable ($1), a User Variable (%NAME), a TQL Attribute (CONCEPT_NAME), a

DTS Attribute (^Code in Source^), a TQL Function (LENGTH) or a User Function (%REVERSE).

The expression-operators and their semantics are:

 The plus sign (“+”) Takes the numeric head of each of its arguments and returns the numeric

sum (as a string).

 The minus sign (“-“) Takes the numeric head of each of its arguments and returns the result of

subtracting the second value from the first (as a string).

The ampersand (“&”) Returns the concatenation of the two string values.

The value of an expression is the result of applying each expression-operator to the run-time values of

its right and left expression-elements. Evaluation proceeds strictly left to right (grouping via

parentheses is not currently supported). Thus:

SET %N = 12 + “34AB” & 56;

sets the value of User Variable %N to the string “ 4656”.

There are two types of expressions: contextual and non-contextual. A non-contextual expression is one

that does not depend on a Concept of Term; it is are made up solely of literals and variables. Non-

contextual expressions are typically found in selectors. Contextual expressions can include an attribute

or function, but there can only be one instance of a contextual element (an expression-element based on

a Concept or Term), e.g. a TQL Attribute, DTS Attribute or TQL Function, in an expression. The

following are examples of valid contextual expressions:

EXPORT “Capital of” & ^State Name^, “is” & ^State Capital^;

SET ^Code in Source^ = “CIS” & concept_code;

Some TQL statements have additional restrictions on expressions. These are documented in the

associated statement descriptions.

The Comment Element

TQL permits two types of descriptive comments to be interspersed with statements. Comments may be

inserted at any TQL element position. A line comment begins with two dash characters “--“and

continues to the end of the line:

FROM myconset WITH CONCEPT_NAME EQUALS “A*” -- this is a line comment

 EXPORT CONCEPT_NAME, CONCEPT_CODE;

A block comment is any string between the “/*” and “*/” character pairs:

FROM myconset WITH CONCEPT_NAME EQUALS “A*” /* this is a block comment

 that continues to the next line */ EXPORT CONCEPT_NAME, CONCEPT_CODE;

TQL Editor User Guide V4.7.2 Page 9

The Collection Statement

The collection-statement collects a set of Concepts or Terms and, normally, executes a set of

statements for each Concept (Term) in the resulting collection. The collection-statement is non-

contextual: it cannot be used in the scope of another collection-statement.

There is only one form of the collection-statement:

FROM [modifier] collection [statement-block] where

statement-block := statement |

 “{“ statement-list “}”

statement-list := statement [statement-list]

modifier := “/” CONCEPTS |

 “/” TERMS |

 “/” STATUS “=” status

status := ALL

 ACTIVE

 INACTIVE

 DELETED

The optional collection-statement modifiers affect the type of collection produced by the statement.

The CONCEPTS modifier (the default) specifies that the collection should consist of Concepts in the

collection’s context. The TERMS modifier similarly specifies that the collection should be of Terms.

At most, one of CONCEPTS or TERMS may be present. The STATUS modifier specifies the DTS

Status of all the objects (Concepts or Terms) in the collection. The default Status is ACTIVE. See The

Collection Element section below for further information.

In most cases, the Concepts or Terms specified in the collection are retrieved, then the statements in

the collection-statement’s scope, its statement-block, are executed. By the definition, a statement-block

is either a single statement, or a list of statements enclosed in braces. Any statement EXCEPT a non-

contextual statement may be used in the block. See Table 1 above and the following sections for

further information on contextual statements. In addition, only one restricted contextual statement is

permitted in the scope, and, if one is present, there can be no unrestricted contextual statements.

The statement(s) in the statement-block are executed, in the order specified, once for each Concept or

Term in the collection (for unrestricted contextual statements). The statements in the statement-block

are referred to as the subordinate statements of the collection-statement and their execution state is

dependent on that of the enclosing collection-statement.

If the optional statement-block is not present, the collection statement simply enumerates a set of

Concepts or Terms. This form is typically used for investigative purposes or for use by external

applications using the TQL API. (See Using the TQL Class section for details on the TQL API.) As an

example, the statement below produces no formal output, but the number of Concepts “collected” is

TQL Editor User Guide V4.7.2 Page 10

reported in the Console panel of the TQL Editor and is available in the read-only SIZE TQL Variable

as described in The Collection Element description below.

FROM [“SNOMED CT”] WITH ^SNOMED CT to ICD-9-CM map^ EXISTS;

The following sections describe additional elements used in the collection-statement.

The Collection Element

The collection element represents a set of DTS Concepts or Terms upon which TQL actions

(statements) are performed. The basic collection element consists of a context (essentially the universe

of Concepts or Terms from which collection objects are to be drawn) and, optionally, selectors that

further refine, or filter, the objects to be chosen based on the values of object Attributes. The definition

of collection is:

collection := ALL WITH selectors |

 context [WITH selectors] where

context := “[“ namespace [“:” version-name] “]” |

 ‘[‘ namespace [“#” version-date] “]” |

“{“ subset [“:” version-name] “}” |

“{“ subset [“#” version-date] “}” |

conset |

termset

The selectors element is defined in the next section.

The context of a collection can be implicit or explicit. In the first collection form above, “ALL”

designates that the object context is all Namespaces. In the second form, the context is explicit via the

context element. In a context, namespace is the name of an existing DTS Namespace, subset is the

name of an existing DTS Subset, authority is the name of an existing DTS Authority, conset is the

name of an existing TQL ConSet file, and termset is the name of an existing TQL TermSet file,

respectively. (A ConSet is a TQL-created file of Concept references and a TermSet is a TQL-created

file of Term references. See the description of the create-context-statement below for further

information on ConSets and TermSets.)

Any context, i.e., namespace, subset, authority, conset or termset, must be entered in the correct case,

and, like attributes, must be surrounded by caret marks (“^”) if the name of the context contains any

character other than letters, digits and underscores. A Read Variable can be used in the place of a

context name.

For Namespace and Subset contexts, the default Version used is the current (most-recent) Version. As

shown above in the definition of context, another Version can be specified by providing either the

version-name (using the colon delimiter) or a snapshot date (using the number-sign delimiter; a

number of standard date formats are accepted):

[^SNOMED CT^:”2013.07.13AA”]

[^SNOMED CT^#”12/25/2013”]

TQL Editor User Guide V4.7.2 Page 11

Only Concepts or Terms from the specified Version will be included in the collection.

A TQL collection has additional attributes: a collection-type (Concepts or Terms), and a collection-

status (the Status of the Concepts or Terms to be included in the collection). These attributes are

typically specified as the modifier on the FROM command keyword that is placed before the collection

definition (see above), but can also be supplied explicitly as part of a previous set-variables-statement.

The collection-type is determined by the presence (or absence) of a CONCEPTS or TERMS modifier.

The TERMS modifier designates that the objects for the collection are DTS Terms. No modifier (or the

infrequently-used CONCEPTS modifier) designates that the collection objects are DTS Concepts.

The value of the collection-status is set from the STATUS modifier or ACTIVE by default. Only

concepts/Terms having the collection-status are included in the collection.

From these definitions, then, a collection can be specified as:

FROM ALL WITH selectors or

FROM [^SNOMED CT^] or

FROM/STATUS=”INACTIVE” [^SNOMED CT^] selectors or

FROM/TERMS [^SNOMED CT^] WITH selectors or

FROM {^CT Procedures^} or

FROM {^CT Procedures^} WITH selectors or

FROM myconset or

FROM myconset WITH selectors or
FROM/TERMS mytermset WITH selectors

In the first example, the collection is a Concept collection whose context is all Namespaces and the set

of Concepts is completely defined by the selectors. (The FROM ALL form places certain restrictions on

the selectors. See The Selector Element section below for details.) In the second example, the

collection is all the Concepts in the given Namespace, i.e., all “SNOMED CT” Concepts. In the third

example, the collection is all the Inactive Concepts from the “SNOMED CT” Namespace (the context)

that also satisfy the selectors, In the fourth example, the collection is a set of Terms from the “SNOMED

CT” Namespace which satisfy the selectors. The collection in the fifth example is all Concepts in the

“CT Procedures” Subset (only Concepts can be selected from Subsets). In the sixth example, the

“CT Procedures” Subset is the context and the set of Concepts is specified by the subsequent

selectors. The collection in the seventh example is simply all the Concepts in the myconset ConSet.

(The format for a TermSet is the same.) And in the final two examples, the context is the myconset

ConSet, or mytermset TermSet, and the collection is qualified by the selectors.

After a collection is evaluated, the read-only TQL Variable SIZE is set to the number of Concepts or

Terms in the collection. This variable can subsequently be referenced in output-statements, etc.

The Selector Element

Selectors further specify the Concepts in the collection. Selectors consist of one or more selector

elements combined by the AND, OR and AND_NOT (logical operator) keywords. Parentheses may be

TQL Editor User Guide V4.7.2 Page 12

freely used to specify grouping. An example of selectors (individual selector elements will be

described in subsequent sections) would be:

^Code in Source^>400 AND

(CONCEPT_NAME EQUALS “A*” OR CONCEPT_NAME EQUALS “B*”)

An individual selector is a Boolean expression consisting of a select-attribute, a select operator, and

(usually) an expression. (See the discussion of the specific operators below for details on expression

requirements.) A select-attribute can be a TQL Function or User Function (described in the Function

Element section above), a TQL Selector Attribute (described in Table 2), a direct or indirect attribute

(described in The Attribute Element section above). The Namespace for selector attributes defaults

to the Namespace specified in the selector’s collection context. If there is not a Namespace context in

the associated collection, each attribute must be post-fixed with its Namespace: ^Demo

Concept[Demo]^. This form can also be used to override the default Namespace assignment. TQL

Variables and attributes must also be consistent with the enclosing collection-type, e.g., a Term

Property Type selector attribute can only be used in a Term collection. (Entry of attributes, including

required bracketing, can be simplified through the use of the TQL Attribute Chooser. See the

discussion in The TQL Editor section below.)

Note that in the ALL WITH … collection form, the collection can only consist of selectors

containing the NAME, CODE, ID or namespace-qualified attributes.

The select-attributes from each object in the context are tested according to the selectors and if the

result is true, the object is included in the collection. Objects testing false are not included in the

collection. Where multiple occurrences of an attribute may be present on an object, for example with

Properties, an “if any” condition is implied in evaluating the object for selection.

The Selector Operator Element

Table 3 describes the selector operators. As shown in the Table, the various operators may or may not

have a right operand, and may interpret the value of the right operand (if required) in different ways.

The two select-unop operators, EXISTS and NOT_EXISTS, do not have any right operand. EXISTS

selects objects from the context on which the associated Attribute exists (has a value). NOT_EXISTS

selects objects which do not have the named Attribute. One application of the NOT_EXISTS operator is

to find “orphan” objects: Concepts WITH PARENT NOT_EXISTS.

The select-string-op operators compare the value of the specified Attribute with the right operand, a

non-contextual expression (see The Expression Element section above for details on expressions). If

the select-attribute is concept-valued (CONCEPT, PARENT, CHILD, ANCESTOR, DEFINING CONCEPT,

Role, Concept Association or inverse Synonym), the testing is performed on the Concept Name of the

Attribute’s target (“to”) Concept. If the select-attribute is term-valued (TERM, Term Association, or

Synonym), the testing is performed on the Term Name of the Attribute’s target (“to”) Term.

For concept and term-valued selectors, the right operand can be a namespace-qualified string:

… with ^My Map to SCT^ EQUALS “Event (event)[SNOMED CT]” …

TQL Editor User Guide V4.7.2 Page 13

When this form is used, wildcards are not permitted. The namespace reference is removed before

testing against the target Concept/Term name, but the resulting target must satisfy the namespace

specification. I.e., in the example above, targets whose name is “Event (event)” in namespaces other

than SNOMED CT would not satisfy the selector. This form facilitates use of Drag and Drop (from

other DTS panels) and TQL parameters as the operand.

When a numeric operator (select-numeric-op) is used with an Attribute, the expression should resolve

to a number, and a numeric data type interpretation is made on the leading characters of the specified

Attribute value. For example, a selector of Default_Dose>=4.5 will be satisfied on a Default_Dose

Property value of “5.2 mg”. Note that the negated value testing operators (NOT_EQUALS,

NOT_MATCHES, and negated numeric operators) only check objects in the context which actually have

a value for the associated Attribute. To select objects in the context that do not have a value for the

Attribute, use NOT_EXISTS.

The select-concept-op operators must be used with concept-valued Attributes (see above) and compare

the values of these Attributes with other Concepts as described in the Table 3. The expression value

must resolve to the name of a Concept that represents the “root” of a subtree against whose Concepts

the Attribute targets will be tested. Thus:

MyMapAssn DESCENDANT_OF “Clinical Finding (finding)[SNOMED CT]”

selects all Concepts whose MyMapAssn targets fall under the SNOMED “Clinical Finding (finding)”

Concept. It is likely that (as above) the Namespace-qualified Concept name will need to be used in this

selector since the context for the selector (i.e., the default Namespace for the Attribute) will usually not

be SNOMED CT, but rather another Namespace. Note that all select-concept-ops implicitly use the

AXIS TQL Variable to determine the hierarchy relationship. See Table 6 for further information.

The select-member-op operator tests whether its left operand (concept-valued) Attribute is a member

of the context specified by the right operand. This right operand is not an expression but a context

form. Thus:

MyMapAssn MEMBER_OF [^SNOMED CT^]

selects Concepts whose MyMapAssn targets are in the SNOMED CT Namespace.

There are additional limitations in the combination of the select-operators with specific select-

attributes which are described in detail in Table 4. The most important consideration is that some

forms currently require searching through all of the objects in the context, for example, those with the

NOT EXISTS operator or those using an indirect (“referencing”) attribute form. This can have severe,

if not terminal, effects on performance. As a result, it is recommended that these forms not be used

in large Namespaces such as SNOMED CT. For further suggestions on the use of selectors and

select-operators, see the Additional Query Considerations section below.

Finally, be aware of the interaction between the collection context and the selectors. The following are

examples of collections that demonstrate the interaction of these elements:

ALL WITH ^Demo Code[Demo]^ EXISTS Collection consists of all Concepts (from any

Namespace) that have the Demo Code Property

TQL Editor User Guide V4.7.2 Page 14

[Demo] WITH ^Demo Code^ EXISTS Collection consists only of Concepts from the

Demo Namespace that have the Demo Code

Property

[^SNOMED CT^] WITH ^Demo Code[Demo]^ EXISTS

Collection consists of Concepts from the

SNOMED CT Namespace that have the Demo

Code Property.

The Conditional Statement

The conditional-statement allows execution of subordinate statement(s) based on the Boolean value of

its associated predicates element. The conditional-statement is an unrestricted contextual statement; it

can be used as a subordinate statement in a collection-statement at any depth.

There are three forms of the conditional-statement:

IF predicates statement-block

ELSE statement-block

ELSEIF predicates statement-block

The first (IF) form, takes a single predicates argument and has a statement-block as a scope (see The

Collection Statement section above for a description of the statement-block element). The predicates

element is similar to the selectors element: it has an LHS that is an attribute, a TQL operator, and a

RHS Expression. (The predicates element is described in detail below.) The predicates element is

evaluated for each Concept (or Term) in the enclosing collection. If the predicates evaluates to true,

the statements in the statement-block are executed. If the predicates evaluates to false, the statement-

block is ignored.

FROM [Demo]

 IF NAME EQUALS “T*” PRINT NAME; --print concepts in Demo that begin with ‘T’

In the above query, the equivalent result could be accomplished with a selector in the enclosing

collection-statement. In fact, the use of a selector is more efficient than a predicate since the predicate

must be evaluated for every object in the collection. Once a collection has been created, however, the

IF statement can provide new functionality not previously available in TQL.

The second (ELSE) form must immediately follow an IF (or ELSEIF) and inverts the sense of the

preceding predicates; if the preceding IF (or ELSEIF) predicates evaluated to false, the statements in

the statement-block following the ELSE are executed.

The third (ELSEIF) form, which must immediately follow an IF or another ELSEIF, combines the

function of an ELSE and IF to more easily permit “chaining” of conditionals. Without this form, nested

blocks would be required. Here is an example using all three forms:

FROM [^States of the Union^] {

TQL Editor User Guide V4.7.2 Page 15

 IF Capital equals “a*” PRINT “The Capital of “ & NAME & “ starts with A”;

 ELSEIF Capital equals “b*” PRINT “The Capital of “ & NAME & “ starts with B”;

 ELSEIF Capital equals “c*” PRINT “The Capital of “ & NAME & “ starts with C”;

 ELSE PRINT “The Capital of ” & NAME & “ is not an A, B, or C”;

}

The Predicates Element

The predicates element is used in forms of the conditional-statement to determine whether or not the

statement’s statement-block is to be executed. The predicates element is an extension of the selectors

element: it consists of one or more individual predicate elements combined by the AND, OR and

AND_NOT keywords. An individual predicate is a Boolean expression consisting of a predicate-

attribute, a select operator, and (usually) an expression. (See The Selector Element section above for

additional information on these elements.)

A predicate differs from a selector in three important ways:

1. The predicate-attribute permits TQL and User Variables in addition to the DTS Attributes of a

selector.

2. The predicate-attribute can be anonymous. See the description of anonymous-attributes in the

Attribute Element section above. In the example below, the predicate accepts concepts whose

namespace contains a Code in Source Concept Property Type and whose Code in

Source value on the concept (if any) begins with “1”:

^Code in Source^(CP) EQUALS “1*”

3. The expression of a predicate can be contextual – it can contain attributes that are dependent on

the Concept or Term of the enclosing collection. (See the Expression Element section above

for details on expressions.) Thus the predicate below would be permitted in a conditional-

statement:

CODE NOT_EQUALS ^Code in Source^

The Create Context Statement

The create-context-statement is used to create a named context: a DTS Namespace, Authority, Subset,

ConSet or TermSet. This context can then be used in subsequent TQL statements. The create-context-

statement is a non-contextual statement: it cannot be used in the scope of a collection-statement.

There are four forms of the create-context-statement:

CREATE “<” authority ”>” “;”

CREATE “[“ namespace “:” authority [“:” nstype [“:” linked_namespace]] “]” “;”

CREATE create-context FROM[/TERMS] collection “;”

CREATE create-context FROM build-context log-op build-context “;”

TQL Editor User Guide V4.7.2 Page 16

create-context := “{“ subset “:” authority ”}” |

 termset |

 conset

build-context := “{“ subset ”}” |

 termset |

 conset

nstype := THESAURUS | ONTYLOG | ONTYLOG_EXTENSION

The namespace, subset, authority, conset and termset elements can be names, string literals, User

Variables or Read Variables. The nstype and linked_namespace elements can be literals, User

Variables or Read Variables.

The first form creates a new Authority.

CREATE <^My Authority^>;

The second form creates a new Namespace. Note that when creating a Namespace, the new

Namespace’s Authority must be specified and must be a previously existing Authority. There are four

options for this form:

CREATE [^My Namespace^:^My Authority^];

CREATE [^My Namespace^:^My Authority^:THESAURUS];

CREATE [^My Namespace^:^My Authority^:ONTYLOG];

CREATE [^My Namespace^:^My Authority^:ONTYLOG_EXTENSION:^SNOMED CT^];

The first two options are equivalent and create a local Thesaurus Namespace with the specified name

and Authority. The third option creates a local Ontylog Namespace, and the last option creates an

Ontylog Extension Namespace linked to SNOMED CT as a base Namespace. When creating an

Extension Namespace, the linked Namespace name is required.

The third form creates a Subset, ConSet or TermSet from the set of Concepts (or Terms) defined by the

collection element(s). All of the Concepts (or Terms) resulting from the collection element are made

part of the create-context. Note that the STATUS modifier is not permitted on the FROM keyword and

the TERMS keyword is only permitted when creating a TermSet.

Note: TQL always creates a Subset made up of individual Concepts even if the collection is defined

using hierarchy attributes such as ANCESTOR or PARENT, i.e., hierarchy-based Subset definition

methods are never applied. This may have performance implications for large Subsets. Use the

DTS Subset Editor to create true intensional Subset definitions.

An alternate methodology for Subset creation is to set a specific Property on a collection using

a set-attributes-statement (see discussion below) and build the Subset in the DTS Subset Editor

with a Subset Expression that uses this Property.

A ConSet (or TermSet) is a named set of Concepts (Terms) that can be used as a context in other TQL

statements. ConSets and TermSets are not a recognized part of the DTS schema and cannot be shared

between different DTS Editor or TQL Editor instances; they are only used for managing local client

TQL Editor User Guide V4.7.2 Page 17

TQL results. When the features and persistence of DTS Subsets are not required, however, the use of

ConSets and TermSets can provide a simpler and more efficient object grouping mechanism. Use of

Subsets, ConSets, and TermSets can also sometimes improve the performance of complex queries (see

Additional Query Considerations below).

Technically, a ConSet or TermSet is implemented as a file in the local file system that contains

references to the Concepts/Terms specified by the context/selector elements. The name of a ConSet file

is tql_conset.tqc where conset is a TQL name-word (a string consisting of letters, numbers and

underscores). Similarly, the name of a TermSet file is tql_termset.tqt. The file is created in the

current working directory.

The fourth form of the create-statement creates a Subset, ConSet or TermSet as an algebraic

combination of build-contexts (Subsets, ConSets or TermSets) The log-op connector element is one of

the three supported logical operators: OR, AND and AND_NOT. Thus:

CREATE consetC FROM consetA OR consetB;

places the union (unique sum) of the Concepts in consetA and consetB into consetC;

CREATE consetC FROM consetA AND {subsetA};

places the intersection (common) Concepts of consetA and subsetA into consetC;

CREATE termsetC FROM/TERMS termsetA AND termsetB;

places the union of the Terms in termsetA and termsetB into termsetC. When using the terms-

type collection (FROM/TERMS) both build-contexts must TermSets.

Finally,
CREATE {subsetC:myauthority} FROM {subsetA} AND_NOT {subsetB};

places those Concepts from subsetA that are not in subsetB into subsetC, i.e., subsetA “minus”

subsetB. Note that as of DTS V4, the name of an existing Authority must be added to the create-

context when creating a subset.

Note: As of TQL 4.0, TQL can create a Subset that consists of Concepts from more than one

Namespace. This is only possible when creating the Subset from ConSet(s) that contain

Concepts from multiple Namespaces.

The Delete Context Statement

The delete-context-statement permits a TQL user to delete DTS and TQL contexts. The delete-context-

statement is a non-contextual statement: it can only be used at the “top-level” of a query; it cannot be

used as a subordinate statement.

The form of the delete-context-statement is:

DELETE context “;”

TQL Editor User Guide V4.7.2 Page 18

The delete-context-statement permanently deletes the designated context, and its contents, from the

DTS Knowledgebase, or file system in the case of a ConSet or TermSet context. When executed from

the TQL Editor application, a confirmation dialog is first displayed. Successful execution of the delete-

statement requires that the DTS User has the MANAGE Permission on the affected context (for

Namespaces, Subsets and Authorities). If the context to be deleted is an Ontylog Namespace, no

Extension Namespaces can be linked to this namespace.

Note: There is no undo available for the delete-context-statement!

The Rename Context Statement

The rename-context-statement is used to change the name of a DTS context: a Namespace, Subset or

Authority. ConSets and TermSets cannot be renamed with this statement. The rename-context-

statement is a non-contextual statement: it can only be used at the “top-level” of a query; it cannot be

used as a subordinate statement.

There is only one form of the rename-context-statement:

RENAME context TO context “;”

The context arguments must be valid Namespace, Subset or Authority context names, and the DTS

object associated with the first context must exist and be writable. The second context name, must, of

course, not already be present.

Examples:

RENAME [^My Namespace^] TO [^Your Namespace^];
RENAME {^My Subset^} TO {^Your Subset^};

RENAME <^My Authority^> TO <^Your Authority^>;

The Edit Statement

An edit-statement allows modification of Namespace data in the DTS Knowledgebase. Execution of

the edit-statement requires that the DTS User has the WRITE Permission on the affected Namespace.

The edit-statement is a contextual statement: it must be used in the scope of an enclosing collection-

statement. The edit-statement has both restricted and unrestricted forms and some forms have

additional restrictions on the enclosing collection. Details are provided below.

There are eleven forms of the edit-statement:

create-concepts-statement:= CREATE_CONCEPTS[/IGNORE_EXISTENCE] create-object-list “;”

create-terms-statement:= CREATE_TERMS[/IGNORE_EXISTENCE] create-object-list “;”

delete-concepts-statement:= DELETE_CONCEPTS

 [/IGNORE_EXISTENCE][/PRUNE_TERMS][/PERMANENT]

[concept-list] “;”

delete-trees-statement:= DELETE_TREES

TQL Editor User Guide V4.7.2 Page 19

[/IGNORE_EXISTENCE][/RETAIN_HEAD][/PRUNE_TERMS]

[/PERMANENT] “;”
DELETE_TREES

[/IGNORE_EXISTENCE][/RETAIN_HEAD][/PRUNE_TERMS]

[/PERMANENT] concept-list “;”

delete-terms-statement:= DELETE_TERMS[/IGNORE_EXISTENCE][/PERMANENT][term-list]“;”

delete-attributes-statement:= DELETE[/PRUNE_TERMS]delete-attr-list “;”

set-attributes-statement:= SET set-attr-list “;”

update-attributes-statement:= UPDATE update-attr-list “;”

delete-attr-list := delete-attr-arg [“,” delete-attr-list]

set-attr-list := (set-attr-arg | set-var-arg) [“,” set-attr-list]

update-attr-list := set-attr-arg [“,” update-attr-list]

The create-concepts-statement and create-terms-statement create new instances of Concepts and

Terms in the DTS Knowledgebase. These statements are restricted contextual statements; there can

only be one such statement in the scope of the enclosing collection-statement and no unrestricted

contextual statements may be present. In addition, selectors are not permitted in the enclosing

collection of these statements and the collection-status must be ALL or ACTIVE. (In the create-terms-

statement, the use of the TERMS modifier is optional.) The create-object-list is the list of the names of

the objects to be created. String literals, words, attribute forms (^^), User Variables, and Read

Variables are supported for the names. Optional forms enable specification of the object’s Code and/or

Id respectively:

CREATE_CONCEPTS ConceptOne, “Concept Two”, ^Concept Three^;

CREATE_CONCEPTS Concept1:”CODE1”, Concept2:”CODE2”;

CREATE_CONCEPTS Concept1::1, Concept2::2;

CREATE_CONCEPTS Concept1:”CODE1”:1, Concept2:”CODE2”:2;

If either Code or Id is not specified, the DTS Server uses its internal Code and Id Generator to provide

the required values.

Normally, the create-concepts-statement and create-terms-statement give an error if any Concept or

Term argument already exists in the DTS Knowledgebase. The IGNORE_EXISTENCE modifier is

available, however, to bypass run-time errors related to the pre-existence of a Concept or Term. This

modifier has been designed to be used when one of these statements is in the scope of a read-

statement. See The Read Statement section below for further information.

The delete-concepts-statement, the delete-trees-statement and the delete-terms-statement delete

Concepts and Terms from the DTS Knowledgebase. For the delete-terms-statement, if multiple Terms

have the same name, all such Terms are deleted. These statements are restricted contextual statements;

there can only be one such statement in the scope of the enclosing collection-statement and no

unrestricted contextual statements may be present.

The default DTS V4 behavior of delete is to set the associated Concept or Term Status to DELETED. If

it is desired to permanently delete a Concept or Term, i.e., remove the object from the Knowledge

completely, add the /PERMANENT modifier to the delete command name. Once deleted using the

PERMANENT modifier, a Concept or Term cannot be recovered.

TQL Editor User Guide V4.7.2 Page 20

These three statements each have two forms: one without arguments and one with arguments. The

unargumented forms operate on all the Concepts (or Terms) in the enclosing collection. The second,

argumented forms, operate only on the Concepts or Terms in the argument list. String literals, words,

attribute forms (^^), User Variables, and Read Variables are supported as arguments.

The delete-concepts-statement and delete-terms-statement delete the associated (implicit or explicit)

Concepts or Terms from the specified Namespace. (The TERMS modifier is optional in the delete-

terms-statement.) The delete-trees-statement forms are similar to the delete-concepts-statement forms

except that in addition to deletion of the Concepts specified in the concept-list, all of these Concept’s

descendants are also deleted. (The hierarchy relationship used for descendants is the current value of

the AXIS TQL Variable. See Table 6.) If the RETAIN_HEAD TQL Variable (see Table 6 and the Set

Statement section below) is true in the context of a DELETE_TREES statement, or present as a

statement modifier, the named (head) Concepts are not deleted, only the descendants of the Concepts

are removed. When a delete-concepts-statement, delete-terms-statement or a delete-trees-statement is

executed from the TQL Editor application, a confirmation dialog is displayed before any deletion

occurs.

Normally, the delete-concepts-statement, delete-trees-statement and delete-terms-statement give an

error if any Concept or Term argument does not exist in the DTS Knowledgebase. The

IGNORE_EXISTENCE modifier is available, however, to bypass run-time errors related to the non-

existence of a Concept or Term. This modifier has been designed to be used when one of these

statements is in the scope of a read-statement. See The Read Statement section below for further

information.

By default, the delete-concepts-statement and delete-trees-statement only delete Concepts. No Terms

associated with any deleted Concepts are removed. If the PRUNE_TERMS TQL Variable has been set to

TRUE (via a previous set-variables-statement or command modifier), however, Terms that would be

made orphans by deletion of the specified Concept will themselves be deleted. (If the /PERMANENT

modifier has been added to the statement, orphan Terms will be permanently deleted as well.) An

orphan Term is defined as a Term having no Synonym relationships to any Concepts. See the Set

Statement section below for further information on the PRUNE_TERMS and other TQL Variables.

The delete-attributes-statement, set-attributes-statement and update-attributes-statement operate on the

Attributes of the Concepts or Terms specified in the enclosing collection. Selectors are permitted in the

collection. These statements are unrestricted contextual statements; they can be used as subordinate

statements in a collection-statement at any depth.

The delete-attributes-statement deletes the specified Attributes on the Concepts or Terms referenced in

the collection from the DTS Knowledgebase. The delete-attr-list is a comma-delimited list of delete-

attr-args: Synonym Types, Property Types, Defining Concepts, Defining Role Types, and Concept

Association Types, or DTS Term Attributes: (inverse) Synonym Types, Term Property Types and

Term Association Types. The specified Type can, optionally, be followed by an equals sign (“=”) and

expression. When the expression is absent, the delete-attributes-statement deletes all occurrences of

the specified Attributes from the Concepts or Terms referenced in the collection. When a value is

given, only those Attributes having the value are deleted:

DELETE OldProp, RealProp = “false”;

TQL Editor User Guide V4.7.2 Page 21

deletes all occurrences of OldProp from all Concepts in the Demo Namespace but only those

occurrences of RealProp that have the value “false”.

delete-attr-list elements can also include qualified forms of Property Types and Concept Association

Types:

DELETE OldProp.Qual;

DELETE OldProp.Qual = “09/02/2010”;

DELETE OldProp.Qual = “Active”. “09/02/2010”;

The first form deletes all occurrences of the Qualifier Qual from all occurrences of the Property Type

OldProp that exist on any Concept in the Demo Namespace. The second form deletes all occurrences

of Qualifier Qual whose qualifier value is “09/02/2010” from all OldProp Property Types. Finally,

the third form deletes occurrences of Qualifier Qual whose value is “09/02/2010” but only on those

OldProp Properties that have the property value “Active”. When used with Association Types, the

first value in the third example refers to the Association’s target Concept (or Term).

The PRUNE_TERMS TQL Variable can be used on the delete-attributes-statement (Concept collection-

types only) to specify that orphan Terms be removed when Synonyms are deleted. If the

PRUNE_TERMS modifier is used, the /PERMANENT modifier can also be added to the statement to

permanently delete the orphan Terms. (See Table 6 and the Set Variables Statement section below for

further information.)

The set-attributes-statement and update-attributes-statement add (or update) Names, Statuses,

Synonyms, Properties, Associations, Defining Concepts and Roles on the Concepts or Terms

referenced in the collection. The set-attr-list is a comma-delimited list of elements consisting of

CONCEPT_NAME, CONCEPT_STATUS, TERM_NAME, TERM_STATUS, NAME, STATUS, Synonym Types,

Concept Property Types, Concept Association Types, Role Types or the keyword

DEFINING_CONCEPT for Concept forms, or (inverse) Synonym Types, Term Property Types or Term

Association Types for Term forms. As with the delete-attr-list, an optional the equals sign (“=”), and

expression can be included. Different Types can be mixed in the set-attr-list.

Examples:

SET MySynonym = “AConcept”, MySynonym = “A Concept”:P;

SET batch = 3.0, updated = “set on @D”;

SET INV ^Parent Of^ = “My Root”;

For Synonym Type and Association Type set-attr-list elements, the value must be the name of an

existing Term or Concept as appropriate for the context of the statement. To specify that a created

Synonym should be the preferred Synonym, append “:P” to the value, as shown in the first example

above.

TQL Editor User Guide V4.7.2 Page 22

As shown in the second example above, string literals in the value expression can contain one or more

of the (case-insensitive) TQL special symbols given in Table 7. These symbols are replaced by their

associated values on expression evaluation. In the third example, the INV keyword is used to specify

that an Inverse Concept Association referencing the “My Root” Concept be set on the selected

Concepts.

For Defining Concepts and Role Types, the statement context must be an Extension Namespace and

the value must be the name of an existing Concept. Note the use of Namespace-qualified arguments to

refer to Concepts in the base Ontylog Namespace:

SET DEF ^finding site (attribute)[SNOMED CT]^ =

“Liver structure (body structure)[SNOMED CT];

SET DEFINING_CONCEPT =

“Liver structure (body structure)[SNOMED CT]”;

The difference between the set-attributes-statement and update-attributes-statement is the semantics of

how the Synonym, Property or Association Attribute is created. For the set-attributes-statement, a new

Attribute is always created on each selected object. For the update-attributes-statement, a new

Attribute is only created if there is not an existing Attribute of the designated Attribute Type on the

object. If there is any occurrence of the Attribute Type, all such occurrences will be updated to

(replaced by) a single instance of the Attribute Type with the specified value. When an Attribute value

is updated, any Qualifiers will be retained. Note that the CONCEPT_NAME, CONCEPT_STATUS,

TERM_NAME, and TERM_STATUS attributes (or their NAME and STATUS alias) can only be used with the

update-attributes-statement.

Similar to the delete-attributes-statement, set-attr-list elements can include qualified forms:

UPDATE batch.date = “@D”;

SET ^Parent Of^.Qual = “My Root”.”Defined”;

In the first example, a date Qualifer is updated (or added) with the current date on all existing

occurrences of the batch Property. If there is no occurrence of a batch Property on the Concept, no

action is taken. This form (propType.qualType=expression) is only available for the UPDATE

statement. In the second form, applicable to both SET and UPDATE, a Qualifier Qual is updated/set

with value ”Defined” on all occurrences of the Concept Association Type “Parent Of” whose

target is “My Root” . This form will only create a new Concept Association (or Property) if one with

the stated value does not already exist.

Setting and updating of Property and Qualifier Attributes respects the presence of any Validator on the

respective Property or Qualifier Types. An error is thrown if the specified value does not pass the

Validator.

Finally, note that the arguments of the set-attributes-statement (the set-attr-list) include set-var-args,

allowing this statement to also set TQL variables. Both contextual (attribute) and non-contextual

(variable) arguments may be mixed in the set-attributes-statement. See the description in the Set

Variables Statement section below for information on setting the value of variables.

TQL Editor User Guide V4.7.2 Page 23

The Export Statement

The export-statement creates an export file (or list) of DTS Knowledgebase Attributes and their values.

Export is performed to the file given in the EXPORTFILE TQL variable, or the Output file field in

the TQL Editor panel if running TQL interactively. The export-statement is a restricted contextual

statement. There can only be one such statement in the scope of the enclosing collection-statement and

no unrestricted contextual statements may be present. Any collection-type or collection-status can be

used, however, some restrictions on the collection context may apply.

There are five forms of the export-statement:

export-concepts-statement: EXPORT_CONCEPTS[/SUBSET_VIEW][/TYPEDEFS] “;”

EXPORT_CONCEPTS[/TYPEDEFS] “;”

export-subset-statement EXPORT_SUBSET “;”

export-namespace-statement: EXPORT_NAMESPACE “;”

export-attributes-statement: EXPORT export-list [SORTED_BY sort-list]“;”

The first four forms are used to export populated DTS objects from the collection of the enclosing

collection-statement into an XML file. Output can be directed to the console or to files, but only files

having an XML extension will be accepted. The paragraphs below describe the general content and

structure of the files created from these forms. More specifically, the export files satisfy the

thesaurus-schema-v4, extension-schema-v4, subset-schema-v4 schemas (.xsd)

available in the bin\tqleditor directory. For additional details on TQL XML export file processing

see the Exporting to XML section below.

The first form of the export-concepts-statement exports the Terms and Concepts (having the

designated Status) of the designated context along with all of their Attributes. Collection selectors are

not permitted with this form. For a Namespace context, the export file consists of all Term and

Concept elements along with their Attributes. Terms are only included if they are Synonyms of the

exported Concepts, and only Attributes owned by the Concept’s Namespace are exported (this handles

the case of Subset and ConSet contexts for which there is no defined Namespace). Property,

Association and Qualifier Type definitions will only be included if the TQL TYPEDEFS variable is true

or TYPEDEFS is included in the command modifiers. For all contexts, Term and Concept Attribute

elements (Synonyms, Properties, Roles, and Concept Associations) are enclosed within their respective

Term and Concept elements. If the Namespace is an Ontylog Extension Namespace the Defined-View

attributes are exported; non-defining Roles are not included but each Concept’s Primitive Attribute,

Defining Concepts and Defining Roles are enclosed.

If the context is a Subset and the Subset’s namespaces are Ontylog Namespaces, the SUBSET_VIEW

modifier can be used which exports the “collapsed” Subset Hierarchy Superconcepts/Subconcepts. The

Subset Hierarchy reflects the hierarchical relationship of the original Namespace, but “skips” Concepts

not in the Subset. The Subset Hierarchy is shown in the DTS Editor Tree panel when a Subset is

selected and “Subset Hierarchy” is chosen as the View Axis. One of the objectives of the export-

subset-statement with the SUBSET_VIEW modifier is to provide a Subset-centric export of Subset

Concepts for use by external applications.

TQL Editor User Guide V4.7.2 Page 24

The second form of the export-concepts-statement exports the Concepts (with their associated

Synonym Terms and Attributes) designated by selectors present in the collection. As with the first

form, type definitions are not written unless the TQL TYPEDEFS variable is true or TYPEDEFS is

included in the command modifiers.

The export-concepts-statement form is a common method for exporting local Concept-based

Namespaces. The following Namespace objects are, however, NOT exported by this statement:

• “Mapping” Associations owned by the Namespace but that do not reference any Concept in the

Namespace

• Namespace Concept and Term Properties owned by the Namespace but that are associated with

Concepts or Terms in other Namespaces

• Namespace Synonyms owned by the Namespace but that are associated with Concepts in Other

Namespaces

• Namespace and Namespace Version Properties

See the description of the export-namespace-statement below to export these objects.

The export-subset-statement exports all the definitional information associated with a Subset. Data on

specific members of the Subset is not included. The context must be a Subset and selectors are not

permitted. This form enables exchange of Subset definitions between DTS systems. The export-subset-

statement provides a complete extract of Subset information including Subset Description, Expression,

and TypeDefs and Attributes for Subset and Subset Version Properties. Loading of exported files is

supported by Import Wizard V4.1 and later versions.

The export-namespace-statement exports all the objects of the designated Namespace. The context

must be a Namespace and selectors are not permitted. Only objects owned by (created in) the

Namespace are exported. The export file begins with all Validator, Property, Association and

Qualifier Type elements, followed by Concept and Term elements (subject to STATUS modifier

restrictions) with all of their Attributes, and finally additional elements not associated with Concepts

and Terms such as non-local Properties, non-local Associations and Namespace and Namespace

Version Properties. If exporting the contents of an Ontylog Namespace, Kind definitions are included.

If exporting an Ontylog or Ontylog Extension Namespace, Role Type definitions are included and the

Primitive Attribute, Kind Attribute, Defining Concept and Defining Role elements, are enclosed within

their associated Concept. Also, Qualifier Attribute elements are enclosed within their associated

Property or Association elements. The export-namespace-statement produces a complete copy of the

Namespace since it includes all objects whether or not they are associated with local Terms or

Concepts. Thus this form can be used for any Namespace, including so-called “mapping” Namespaces,

which have no Concepts of their own.

Any export file created by either the export-subset-statement or export-namespace-statement (that

includes Type definitions) can subsequently be imported into other DTS Subsets or Namespaces using

the Import Wizard plug-in, recreating/reloading the selected contents. It is recommended that such an

import be made to a completely empty Namespace or new Subset. Import Wizard Version 4.1 or later

MUST BE USED for exports created by TQL Version 4.0. Support for export and import of Ontylog

Namespaces requires TQL Version 4.5 and Import Wizard Version 4.5 respectively. For further

information on importing TQL XML files, see the DTS Import Wizard User Guide.

TQL Editor User Guide V4.7.2 Page 25

The export-attributes-statement outputs a set of string values evaluated in the context of each of the

Concepts or Terms present in the enclosing statement’s collection. Optionally, the lines/rows of the

export can be sorted by Attributes specified in the sort-list. Delimited text (.txt), Excel (.xls and .xlsx)

and XML output formats are supported.

Formally, the export-list is a comma-delimited list of expressions. Arbitrary expressions are supported,

but most commonly these expressions are contextual, containing direct and indirect attributes,

functions, variables and the TQL Export Attributes shown in Table 2. Anonymous attributes are

permitted.

If the attribute is a Property Type or Concept Association Type, the attribute’s Qualifiers may also be

displayed using the qualifier syntax: PROPORASSN_TYPE_NAME.QUALIFIER_TYPE_NAME. If the

attribute is a Role Type, the form ROLE_TYPE_NAME.GROUP returns the Role Group number

associated with the Role(s).

For the TQL Export Attributes SYNONYM, PROPERTY, ASSOCIATION and ROLE, the default display

string is the “value” of the (possibly multiple) DTS Attribute instance(s): Synonym Term Name,

Property Value, Association target Concept or Term Name, and Role target Concept Name. To export

the Type name of the Attribute, the TYPE modifier can be used. The default string is also available

using the VALUE modifier.

EXPORT NAME, PROPERTY.TYPE, PROPERTY.VALUE;

An export-list expression also supports two extended attribute forms: indirect attributes and encoded

attributes. Often, these forms are used to enable Concept (or Term) Attributes in the context

Namespace to display Concepts (or Terms) in another Namespace.

Indirect (“referencing”) attributes were described in The Attribute Element section above. Encoded

attributes provide similar indirect functionality, but based on DTSProperty values.

If an export attribute is a Property Type, and the value of the Property “encodes” (is the same value as)

a Name, Code, Id or unique Property on another Concept, the referenced Concept can be represented

using the “encoded” syntax:

MAP_PROP|CONCEPT_CODE[^SNOMED CT^]

MAP_PROP|^Code in Source[SNOMED CT]^

In the first example, this creates a concept-valued export element (from the SNOMED CT Namespace)

using the Concept whose Code is the same value as the base Concept’s MAP_PROP Property.

(CONCEPT_NAME, CONCEPT_CODE, and CONCEPT_ID can be used in this form.) In the second

example, a concept-valued export element is returned using the Concept whose Code in Source

Property has the same value as the base Concept’s MAP_PROP Property. While the explicit Namespace

in the second component is not required, as with the referencing syntax it is typically needed since the

encoded export element is often in a different Namespace than the statement’s default context. By

itself, the exported value of an encoded element will be the referenced Concept’s CONCEPT_NAME. The

encoded form can, however, be combined with the referencing form to access other Attributes as in:

TQL Editor User Guide V4.7.2 Page 26

MAP_PROP|^Code in Source[SNOMED CT]^->QUALIFIED_NAME

If the base Attribute is term-valued (TERM, SYNONYM, Synonym Type, or Term Association Type)

the element displayed in the export record is, by default, the target Term’s TERM_NAME, but can also

be any string-valued Attribute (for example a Term Property) of the base Attribute’s target Term.

Supported target Attributes are:

• TERM_NAME or NAME (the default),

• TERM_CODE or CODE,

• TERM_ID or ID,

• TERM_STATUS or STATUS,

• NAMESPACE, and

• Term Property Type

Similar considerations as described above to concept-valued forms apply to term-valued forms.

When an export-attributes-statement outputs to an XML file, there are constraints on the export-list.

See the Exporting to XML section for further information. The remainder of this section describes

considerations of text and Excel export files.

Generally speaking, for text/Excel files the exporter generates one line/row of output for each Concept

or Term. In text files, export expression values (the results of export-list elements) are separated by the

value of the TQL field delimiter (the first character of the TQL DELIMITER variable); by default the

vertical bar or pipe (“|”) character. In Excel, each expression value is placed in its own column cell. If

on evaluation, an expression results in more than one value (e.g., when the associated contextual

Attribute has repeated values), however, multiple lines/rows per Concept can be generated. Thus, if

Synonym Attribute is specified in an export expression and a selected Concept has two synonyms, two

lines/rows will be produced, differing only in the value of the Synonym field. If more than one field

has repeating values, an appropriate number of unique output records will be produced. (The

complexity of this multiplicity is the reason that a given expression can only have one contextual

Attribute.)

TQL differentiates between independent and dependent repeated values. If a specification calls for

both: MyMap->CONCEPT_NAME and MyMap.MyMapQualifier where MyMap is a Concept Association

Type, and there are two occurrences of the Association (each with one Qualifier) in a Concept, only

two rows will be created, corresponding to the two occurrences of the independent Attribute MyMap. If

one of the MyMap Associations had two instances of MyMapQualifier, on the other hand, three rows

would be produced.

It is sometimes required to be able to place multiple (repeated) Attribute values into a single export

field. This “grouping” of values can be accomplished by placing the name of the Attribute to be

grouped in parentheses. The Attribute’s multiple values are placed in a single export field, with the

individual values separated by TQL’s (secondary) group delimiter. This delimiter defaults to the colon

“:” but can be overridden by setting a second character in the TQL DELIMITER variable (see The Set

Statement section below).

TQL Editor User Guide V4.7.2 Page 27

One of the results of grouping is a potential reduction of output rows. Note, however, that some

Attribute relationships may be lost, or disrupted, if grouping is specified on multiple related/dependent

fields. In the statement below:

FROM [Demo] EXPORT CONCEPT_NAME, (MyProp), (MyProp.Qualifier);

the second group takes precedence in determining the record count. If a Concept has two MyProp

Properties, each with two Qualifiers, the output would appear as:

… | PropValue1:PropValue2|Qual12:Qual12

… | PropValue1:PropValue2|Qual21:Qual22

which may not be what was desired. Without grouping, of course, four rows would be output.

The optional SORTED_BY clause specifies alphanumeric sorting of export lines/rows by selected export

fields (Attributes). Attributes in the sort-list must be (top-level) contextual Attributes from the

expressions in the export-list.

Finally, export operation can be affected by the settings of export-related TQL Variables:

APPEND If true, export lines are appended to an existing export file. Otherwise, a new file

is created.

DATA_FORMAT Specifies the format (as a Java SimpleDataFormat string) the format of output

dates.

DELIMITER Specifies the primary, and secondary, field delimiters.

EXPORTFILE Specifies the name of the export file.

HEADER If true, the default, a field header line is written to the export file.

LIMIT Limits the number of Concept/Term lines exported. The default value of zero

means no limit.

TIME_FORMAT Specifies the format (as a Java SimpleDataFormat string) the format of output

times.

UNIQUE If true, only unique output lines are exported.

Values for these variables can be set using a set-variables-statement or by including the TQL Variable

name (and optional value) as a modifier on the EXPORT command:

… EXPORT/HEADER=”false”/LIMIT=5/APPEND CONCEPT_NAME, ^Code in Source^;

 See Table 6 and the Set Variables Statement section below for further information on these effects.

The For Statement

The for-statement iterates a Concept or Term object over the instances of an attribute. The for-

statement is an unrestricted contextual statement; it can be used as a subordinate statement in a

collection-statement at any depth. For-statements may not, however, be nested: a for-statement cannot

occur within the scope of another for-statement.

TQL Editor User Guide V4.7.2 Page 28

There is only one form of the for-statement:

FOR for-attr statement-block

where for-attr is any TQL or DTS attribute that can have multiple values.

TQL attribute filtering operations such as selectors (WITH …) and conditional-statements (IF …), have

an “if any” interpretation: if any of the attributes meet the predicate conditions, the Concept or Term is

passed to the associated statement-block with all of its attributes. This makes it impossible to perform

operations on specific instances of an attribute such as only printing a Synonym attribute if its value

begins with “A”.

The for-statement enables attribute-specific operations by passing a Concept or Term object to the

associated statement-block that only contains one instance of the specified for-attr:

FROM [^SNOMED CT^] WITH NAME EQUALS “myocardial infarction (disorder)”

 FOR SYNONYM

 IF SYNONYM EQUALS “MI*” PRINT NAME, SYNOMYM;

The third line of this query is executed once for each Synonym value on the selected Concept. If the

Term name of any of these Synonyms begins with “MI”, it is printed.

As shown above, the for-statement is usually used in conjunction with a conditional-statement to

perform attribute filtering.

The delete-attributes-statement, set-attributes-statements and update-attributes-statement can also be

used with the for-statement to operate on specific instances of attributes:

FROM [Demo]

 FOR ^My Prop^

 IF ^My Prop^ EQUALS “old*” DELETE ^My Prop^;

Only instances of My Prop whose value begins with “old” will be deleted.

The Output Statement

The output-statement enables message strings to be placed in the log and export streams. The output-

statement is, in general, an unrestricted statement and can appear in any query position. Some

restrictions do apply to output-statement arguments (see below).

The two forms of the output-statement are:

LOG export-list “;”

PRINT export-list “;”

where export-list is a comma-delimited list of expressions as described above in the Export Statement

above. TQL parameters (see the Parameterized Queries section below) can be used in place of the

TQL Editor User Guide V4.7.2 Page 29

expressions. Individual export-list expressions must be consistent with the usage of the output-

statement: if the statement is used in a non-contextual position, e.g., as a top-level statement, then only

non-contextual expressions are permitted. When used in a contextual position, any expression form is

available.

The first form of the output-statement writes its arguments (as separate strings) into the log file stream.

If the query is being run from the TQL Editor, the strings are also written to the Console panel. Each

argument is written on a separate line.

The second form writes its arguments to the TQL export file stream. This form can be used, for

example, to place explanatory or separation messages in the export file when multiple export-

statements are used in a query. No header strings are written by PRINT, but a header can be written by

a separate PRINT placed before a collection-statement. The PRINT form includes delimiters between

arguments (the DELIMITER TQL Variable) if the export file is text. If the export file is an Excel file,

each argument is written to a different cell.

The Set Variables Statement

The set-variables-statement assigns values to variables. The set-variables-statement is an unrestricted

statement and can be used anywhere in a query. See the Set Variables section below for details on

statement arguments. Note, however, that the contextual set-attrs-statement (see the Edit Statement

section above) accepts both variable and attribute arguments and as such can perform the same

functions as the set-variables-statement.

Set Variables

The form of the set-variables-statement is:

SET set-var-list;

where set-var-list is a comma-delimited list of set-var-args:

 set-var-arg := variable “=” expression “;”

Both TQL Variables and User Variables may be used in a set-var-arg. As described in The Variable

Element section above, TQL Variables are pre-defined and affect processing of TQL statements, while

User Variables have names that begin with the percent (“%”) character and are defined by their

occurrence in a set-var-arg. Once defined, User Variables can be used in any subsequent expressions.

Both TQL Variable and User Variable names are case-insensitive.

SET HEADER = “true”, %PROMPT = “Concept name:”;

Table 6 describes the semantics of each TQL Variable and specifies which statements are affected by

each variable (see the Applies To column in Table 6). Values set by a set-var-arg override internal

default values, arguments of the TQL Class main method, and values, such as the delimiter, export file

and header, that are specified in the TQL Editor GUI. Values set by the set-statement are maintained

throughout an instance of the TQL Class and thus may extend across multiple queries when the TQL

TQL Editor User Guide V4.7.2 Page 30

API is used. Since the TQL Editor instantiates a new TQL instance for every query execution,

however, the TQL Variable values are reset at each run.

A shorthand syntax is also available by which TQL Variables can be set in the context of their

associated statements. The variables are placed as modifiers on the statement commands. The modifier

can just name the variable, in which case the variable’s value is set to “true”, or a specific value can be

given:

… EXPORT/HEADER=”false”/UNIQUE/EXPORT_FILE=”text.txt” …

The availability of a specific modifier on a command is statement-dependent; not all TQL Variables

can be used on all commands. See each statement description for details. Note that the scope of these

modifier-set values is limited to the statement itself, i.e., after statement execution, the previous values

of all TQL Variables are restored.

The Read Statement

The read-statement allows the operations in a query to be directed by values in an external file. The

read-statement is an unrestricted statement and can be used anywhere in a query. Read-statements may

not, however, be nested: a read-statement cannot occur within the scope of another read-statement.

There is only one form of the read-statement:

READ expression statement-block

where expression must evaluate at run-time to the name of a .txt, .xls or .xlsx file.

The read-statement opens the specified input file, then executes its statement-block once for each line,

or row, in the file. When each line is retrieved, its fields, or cells if an Excel file row, are assigned to

TQL Read Variables: variables whose initial character is ‘$’. The value of the first field is given to the

variable named $1, the second to $2, etc. For text files, fields are determined using the primary

delimiter in the TQL DELIMITER variable (see additional details below). Only nine Read Variables

are currently supported. Then the statement-block is executed.

Read Variables can be used as context names, as Concept and Term names, and as part of expressions.

See the documentation on individual statements and elements for further details and limitations.

Here is an example of a query that creates Concepts in the Demo Namespace whose names and codes

are taken from fields in an input file:

FROM [^Demo^] {

 READ "load-concepts.xlsx" {

 LOG "Creating concept "&$1;

 CREATE_CONCEPTS/IGNORE_EXISTENCE $1:$2;

 }

}

TQL Editor User Guide V4.7.2 Page 31

The first column of the load-concepts.xlsx file contains the desired Concept name, and the second

column contains the associated Concept code. Note that a null (empty) value of Concept Code is

permitted. Finally, note that the read-statement could also have been put outside the collection-

statement.

As described in The Edit Statement section above, the optional IGNORE_EXISTENCE modifier tells

TQL to ignore any run-time errors related to the pre-existence of a named Concept.

The read-statement operation can be affected by the settings of the following TQL Variables:

DELIMITER Specifies the primary field delimiter for input text files. Ignored for Excel files.

HEADER If true, the default, the first (header) line of the input file is ignored.

LIMIT Limits the number of input lines read. This can be of use in testing. The default

value of zero means no limit.

Values for these variables can be set using a prior set-variables-statement or by including the TQL

Variable name (and optional value) as a modifier on the READ command:

READ/HEADER=“false”/LIMIT=5 “my-load-file.xlsx” { … }

Parameterized Queries

TQL parameters are special elements in queries that can be replaced by user-entered values supplied at

run-time. When a query containing parameters is run in the TQL Editor, a Parameter Entry Panel is

shown that prompts for the parameter values. (See the TQL Editor section below for further

information on the Parameter Entry Panel.) Entered values then replace the parameter elements in the

query. A separate application, the TQL Commander, is also available for running parameterized

queries. See the TQL Commander User Guide for further information.

Parameters can be used in place of any expression-element in a TQL query. (The only exception to

this rule is that parameters cannot replace elements in a parameter-statement or constrain-statement.

See details below.) The form of a parameter is the parameter’s name surrounded by the at-sign (@):

FROM [“SNOMED CT”] WITH CONCEPT_NAME EQUALS @Concept Pattern@

 EXPORT CONCEPT_NAME;

The parameter-statement and constrain-statement support the use of parameters in queries. Both

statements are non-contextual statements and can only be used at the “top-level” of a query; they

cannot be used as a subordinate statement. The parameter-statement is required to declare use of a

parameter. A parameter-statement can be placed anywhere in the query, but it must precede any use of

the statement’s parameter(s) in other statements. Each argument in the statement declares a parameter

and, optionally, its type and help text.

parameter-statement := PARAMETER parameter-list “;”

where parameter-list is a comma-delimited list of arguments of the form:

 parameter [“:” [parameter-type] [“:” help-literal]

TQL Editor User Guide V4.7.2 Page 32

The optional parameter-type argument provides direction to the Parameter Entry Panel for validation

of parameter values. The following parameter-types are supported:

CONCEPT The parameter value must be a namespace-qualified name of an existing Concept:
“North[States of the Union]”

TERM The parameter value must be a namespace-qualified name of an existing Term: “Ole

Miss[States of the Union]”.

INTEGER Validates the entry value to an integer.

NUMBER Validates the entry value to a number.

BOOLEAN Validates the entry value to “true” or “false”.

FILE No validation, but shows a Browse button in the parameter’s Parameter Entry Panel

row for selecting a file.

STRING No validation. The default parameter-type.

The optional help-literal argument provides a help string to the Parameter Entry Panel.

The TQL Parameter Entry Panel uses information from the parameter-statement and the constrain-

statement (see below) to construct an entry field and validate the entered value. The prompt label for

the field is taken from the name of the parameter. The panel constructs a default help string based on

the parameter-type and any associated constraints, but this default can be overridden by specifying a

help-literal in the parameter-statement argument. The order of appearance of parameter fields in the

Parameter Entry Panel is the order in which the parameters are declared in parameter-statements.

The following parameter-statement would need to precede the example export-statement above:

PARAMETER @Concept Pattern@::”Enter a concept name search pattern.”;

Note: Parameters cannot be used to replace any help-literals in parameter-statements.

The screen shot below shows the Parameter Entry Panel for this parameter-statement:

The TQL Parameter Entry Panel can perform further validations (tests) on input values beyond those

associated with the parameter-type based on the presence of constrain-statements in the query:

constrain-statement := CONSTRAIN parameter TO constrain-list “;”

The constrain-list is a comma-delimited list of arguments of the form:

binop operand

TQL Editor User Guide V4.7.2 Page 33

where binop is any of the binary selector operators shown in Table 3 and operand is the right operand

shown in the Table. Each of the arguments in the constrain-statement specifies a validation that must

be satisfied by any entered value for the designated parameter. Value interpretations are performed as

required by the specified binop, e.g., numeric interpretation for an arithmetic operator, or

Concept/Term context membership for a MEMBER_OF operator. For the MEMBER_OF operator, the TQL

Parameter Entry Panel supports implicit “starts with” (wildcard) lookups in the specified context.

The constrain-statement can appear anywhere in the query after the associated parameter’s

declaration. All constraints are applied when a value is entered. There is no other dependence on the

position of the constraint-statement.

The constrain-statement below could be used in the example export query:

CONSTRAIN @Concept Pattern@ TO NOT_EQUALS “*” ;

Note: Parameters cannot be used to replace any operands in a constrain-statement.

Finally, note that the parameter-statement and constrain-statement are declarative statements used by

the TQL Editor (and TQL Commander) subsystems. They are not processed at run-time. In particular,

the constrain-statement will not validate parameter replacements when queries are run via methods in

the TQL Class.

TQL Editor User Guide V4.7.2 Page 34

Exporting to XML

A TQL XML export file contains a description of DTS objects associated with a designated

Namespace, Subset, or ConSet. If created by an export-concepts-statement, export-subset-statement or

export-namespace-statement, all requested objects of the specified context are exported formatted

according to the associated XML schema definition.

If created by an export-attributes-statement, only the selected Concepts and specified export-attributes

(along with their associated attribute Types) are exported. Because of the highly structured format of

an export XML file, restrictions have been placed on the types of export-attributes that may be used. In

general, the export-attributes should be thought of simply as the set of objects to be exported, rather

than as describing an output format or order.

Specifically, the following rules must be adhered to in the export-attributes-statement when an export

is directed to an XML file:

• Export attribute keywords (see Table 2) are not permitted in the export-attributes. Note,

however, that full definitional information for the set of selected Concepts, e.g., Namespace,

name, code and id, are always included in the export, and individual Concept Attributes, e.g.,

Association Types and Property Types, can be specified.

• Qualified Property Types and Association Types are permitted as display attributes. These add

the designated Qualifier to the export set.

• Functions are not permitted.

• Any SORTED_BY clause is ignored.

TQL Editor User Guide V4.7.2 Page 35

The TQL Editor

TQL queries can be created, maintained, saved, and run from the TQL Editor. The Editor can be

started standalone by running TQLEditor.bat, or within the DTS Editor by clicking on the TQL icon

in the icon bar or selecting Tools|TQL Editor from the menu bar. Figure 1 below shows the layout

of the TQL Editor. The Title Bar gives information on the status of the current query. The Menu Bar

gives access to all TQL functions, while the Icon Bar provides single click access to frequently-used

features. The upper Editor Area provides a Notepad-like area for creating and editing TQL queries.

See the Creating and Editing Queries section below for full details. The middle Info Area has two

tab panels: the Console panel shows status and diagnostic messages, while the Output panel is an

optional destination for query output. Drag of selected query Concepts from the Output panel is

supported. See the Using the Output Panel section below. Finally, the bottom Output Specification

Area is used to select the destination and parameters for query output. See the Specifying Output

Location section below.

Open Query

Title Bar

Menu Bar

Icon Bar

Editor Area

Info Area

Output Spec Area

Save Query

Parse Query

Connect

Disconnect

Run Query

Stop Query

Figure 1 – The TQL Editor

TQL Editor User Guide V4.7.2 Page 36

TQL Menus

The File Menu

The File menu contains options for working with TQL files and setting TQL preference values:

New Clear the Editor Area and current file name in preparation for a new query.

Open Query Open a file browser dialog to select a saved query.

Save Query Save the current query in the current file.

Save Query As Open a file browser dialog to save the query into a new file.

Connect Connect to a DTS Server (only present when TQL is running in standalone

mode).

Disconnect Disconnect from a DTS Server (only present when TQL is running in standalone

mode).

Preferences … Open the TQL Preferences dialog. See TQL Preferences below.

Exit Close the TQL window. If the current query has been modified, and not saved, a

warning dialog is shown.

Edit Menu

The Edit menu contains options for editing text in the Editor Area:

Undo Undo the last edit operation.

Cut Place the selected query text in the Clipboard and erase from the query.

Copy Place the selected query text in the Clipboard.

Paste Paste the text contents of the Clipboard into the query at the cursor position.

Clear Erase all the text in the Editor Area.

Select All Select all the text in the Editor Area.

Query Menu

The Query menu contains options for processing queries in the Editor Area:

Parse Query Parse the current query.

Run Query Run (execute) the current query.

Stop Query Stop the currently executing query.

Help Menu

The Help menu contains options for accessing TQL information:

Open TQL User Guide Opens the TQL User Guide (this document).

Open Attribute Chooser Opens the TQL Attribute Chooser dialog.

Open RegEx Helper Opens a TQL RegEx Helper dialog for testing Regular Expressions.

About TQL Editor Opens the About TQL dialog.

TQL Editor User Guide V4.7.2 Page 37

TQL Preferences

The TQL Preferences dialog permits selection of preference items when running TQL. The dialog

is shown below:

The upper section of the dialog shows the Editor Area preferences while the lower section contains the

preference for the Output tab of the Info Area. Descriptions of the various preference setting are given

below:

Editor Preferences

Tab Size Sets the size (in spaces) associated with a tab character. Tab characters

are maintained in the query string. Only the display of the query in the

Editor Area is affected by this preference.

Show Header When selected, enables display of the TQL Header in the Editor Area.

See Loading and Saving Queries below for further information on the

TQL Header line.

Auto-close Doublets Certain characters must occur in pairs in TQL queries. This includes

single and double quotes, up-arrows, parentheses, brackets, braces, and

side-arrow characters. When this preference is enabled, entry of one of

TQL Editor User Guide V4.7.2 Page 38

the initial characters of a pair automatically adds the closing character to

the text. This enables typing to proceed normally without having to

worry about closely the doublet explicitly.

Auto-close Doublets also automatically removes a closing doublet

character when the backspace key is pressed in the middle of an empty

doublet, e.g., “{}”. Empty doublet removal applies to all Auto-close

doublets.

Auto-close Doublets is disabled within literals and comments.

Auto-indent New Lines When selected, pressing RETURN in the Editor Area will indent the new

line (by inserting tab characters) appropriate for the block depth of the

query. Additional processing is performed when the RETURN is (1)

inside a literal: the literal is closed and restarted on the next line, (2)

inside a comment: necessary characters are added to maintain the

integrity of the comment, and (3) inside an empty brace doublet: another

line is added (with the closing brace) after the new line indented at the

original indent level.

Show ToolTip Help When selected, informational ToolTips are shown for the Command

Keyword, TQL Variable, TQL Modifier and Operator elements.

Command Keyword ToolTips show all statement forms using the

keyword along with any available Modifiers. Variable, Modifier and

Operator ToolTips give descriptions of the element.

Color Query When selected, the Editor Area displays the syntax elements of the query

in designated colors. If not selected, the query text color is black. See

Editing Colors below for information on setting individual element

colors.

Output Preferences

Number Lines When selected, lines in the Output tab of the Info Area will be

numbered.

After modifying any preference settings, press Save to persist the values in the TQL configuration file.

Press Restore Defaults to set all preference values to their TQL defaults (the new settings will not

be automatically saved), or press Cancel to exit the TQL Preferences dialog without additional

action.

Editing Colors

The Colors section of the TQL Preferences dialog enables setting of the text color to be assigned

to each syntactic element of a query. Each line in this section (see example above) contains the

syntactic element name, e.g. Comment, a color box showing the text color to be used and an Edit

button.

Pressing an Edit button opens a Color Chooser dialog for the associated element:

TQL Editor User Guide V4.7.2 Page 39

The top of the Chooser dialog supports color selection and the preview at the bottom shows the

associated element text in the selected color. Multiple tabs are available for color selection: Swatches

(the simplest), HSV(Hue Saturation Value), HSL (Hue Saturation Lightness), RGB, or CMYK. Press

the Reset button to restore the entry color value or the OK button to transfer the color selection back to

the TQL Preferences dialog.

Creating and Editing Queries

The Editor Area is used to create and edit TQL queries. It provides standard Windows editing

capabilities (similar to those in Notepad). Editing functions are available from the Edit menu (Undo,

Cut, Copy, Paste, Clear, and Select All) and the Icon Bar (Undo, Cut, Copy, and Paste).

Standard keyboard and mouse shortcuts are also supported.

TQL Editor User Guide V4.7.2 Page 40

To facilitate the entry of DTS Attribute

names, the TQL Editor also provides an

Attribute Chooser panel (shown at

right). To open the panel, right click in the

Editor Area. The popup menu has four

options: Open Attribute Chooser,

Open RegEx Helper, Insert Create

Template and Insert Export

Template. The first opens the Attribute

Chooser Panel, the second opens the RegEx

Helper Panel (described in the Getting Help

section below), and the third and fourth

insert the associated “template” query into

the Editor Area. In the Chooser panel, select

the desired Namespace, Subset, ConSet or

TermSet and then Attribute Type to show the

available Attributes. Attribute Types include

TQL Attributes (shown in the example) and

TQL Variables, as well as DTS Attributes.

In the figure above, TQL Attributes are

marked with “E” for Export Attributes and

“S” for Selector Attributes. To insert any Attribute name (or Namespace, Namespace Version,

Authority, Subset, Subset Version, ConSet or TermSet name) into the query, drag the name from the

Chooser panel to the desired position in the Editor Area (the caret will track the drag position). You

can also double click on the element name to replace the current Editor selection (or simply insert at

the caret position if there is no selection). The text inserted is the full quoted, namespace qualified,

representation of the Attribute.

When the TQL Editor is run as part of the DTS Editor, a Concept (name) can similarly be dragged

from other DTS Editor panels into the TQL Editor to populate a value element.

Loading and Saving Queries

Queries can be saved to files (with a “.tql” extension) via the Save Query As option (available in

the File menu) and retrieved by the Open Query option (in the File menu and Icon Bar). The name

of the currently open query file is show in the TQL Editor Title Bar, along with a modified flag (“*”) if

appropriate. If the query has not yet been saved, the file name is shown as “(blank)”. A Save option

(available in the File menu and Icon Bar) rewrites the query into the current file.

Whenever a query is saved, a TQL Header is written at the top of the file. The header is a comment

line that gives the TQL version, user and saved date/time:

/* TQL V4.0 Query saved by dtsadmin on 2 Sep 2014 21:08:12 */

Visibility of the header line in the Editor Area can be turned on or off by the Show Header Line item

in the File|Preferences menu.

TQL Editor User Guide V4.7.2 Page 41

Running Queries

The Query menu options (and associated Icon Bar items) provide the capability to parse (test/compile)

and run queries. Before running (or even parsing) the query, the TQL Editor must, however, be

connected to a DTS server. If the TQL Editor is being run as a plug-in to the DTS Editor, this occurs as

part of the parent application. If the TQL Editor is being run “stand-alone”, on the other hand,

connection must be established explicitly. In this case, Connect and Disconnect options are

available in both the TQL Query menu and Icon Bar. The Connect option opens a dialog box

requesting server connect parameters.

The syntactic correctness of a query can be tested by selecting the Query|Parse Query menu item

(or clicking on the Parse Query icon). The query will be compiled and any errors will be reported in

the Console panel of the Info Area. An erroneous token will be highlighted in the Editor Area. To

parse and run the query, select the Query|Run Query menu item or click on the Run Query icon. If

the query is syntactically correct, it is run and the export output is directed (by default) to the Output

panel of the Info Area (see Specifying Output Location below). During the run, status and diagnostic

messages are written to the Console panel. (Status messages include the elapsed time of the query.) If

it is desired to terminate the query run, select the Query|Stop Query item or click on the Stop icon.

This will terminate the query operation, within the procedural granularity provided by the DTS API.

Running Parameterized Queries

When a query is run, if the query has parameters, the TQL Editor opens a Parameter Entry Panel (see

example below) for input of the parameters’ values.

TQL Editor User Guide V4.7.2 Page 42

The panel displays one line for each parameter in the query. The order of the parameters in the panel

is the order in which the parameters are declared in parameter-statements. The line’s prompt is the

name of the parameter. The parameter value should be entered into the text field. If the parameter-

type is CONCEPT, a small “C” is shown at the right end of the field. This means that the field accepts

Drag and Drop of DTS Concepts from other DTS Editor panels. Hover the mouse over the question

mark icon to see a help string for the value. A default help string is computed by the panel from the

parameter’s type and context, but a user-defined string can be specified in the parameter’s parameter-

statement. Finally, if the parameter-type is FILE, a Browse button is present. Click this button to open

a file browser for selection of an existing file.

Hit ENTER to accept the value in a field. The Parameter Entry Panel then applies any implicit

(parameter-type) or explicit (constrain-statement) validation rules. After all values have been entered,

click on Apply to run the query with these values substituted for the parameter elements. Alternately,

click on Clear to clear all existing values, or Cancel to terminate query processing.

Specifying Output Location

By default, the query export output is written to the Output panel in the Info Area. To write the output

to a file, uncheck the Send output to info area checkbox in the Output Specification Area and

enter an output file name (or click on the Browse button). The output file can be XML (.xml), ASCII

text (.txt), or Excel (.xls, .xlsx). See the Exporting to XML section above for details and specific

constraints on XML output,

For Excel files, a special syntax is available to direct output to a specific sheet of the file. The form:

C:\Apelon\MyFolder\concepts.xlsx:First

will cause the output to be written to a new sheet in concepts.xlsx named First. This sheet syntax

is only available for .xls and .xlsx files.

For output to a text or Excel file (or the Output panel), check the Include data header checkbox

(see Figure 1 above) to include an initial header row, and, if a text output, enter the desired field

delimiter character(s) in the delimiter text box. The default field delimiter is the vertical bar (“|”) and

default group delimiter is the colon (“:”). Alternately, the values of these parameters can be specified

using the TQL EXPORTFILE, HEADER, and DELIMITER variables (see The Set Statement section

above for further details).

Using the Output Panel

In addition to displaying the output from a TQL Query, the Output panel can be used as a copy and/or

drag source. The example below shows a query result on the right side of the panel with (optional) line

numbers and Concept icons on the left. (Numbering of output lines is controlled by a TQL Preference

item. See TQL Preferences above.) Text can be selected and copied from the right side, while Concept

objects can be independently selected and dragged from the left side. A ToolTip on the Concept icon

gives the name of the Concept.

TQL Editor User Guide V4.7.2 Page 43

Note: When the UNIQUE variable is applied to an output query, the Concept associated with an output

row is one of the Concepts having the unique attribute value. The Concept selected is unspecified.

Getting Help

The Help menu item provides access to this User Guide and an About screen for the TQL Editor. The

User Guide and About are also available in the DTS Editor’s Help menu.

Also on the TQL Help menu is a link to the TQL Regular Expression Helper Panel. This panel

provides a testing template and documentation for using Regular Expressions. See Appendix B for

further information on Regular Expressions and the Regular Expression Helper Panel.

TQL Editor User Guide V4.7.2 Page 44

Additional Query Considerations

TQL includes a rich syntax with which to write queries. Often, this means that a query for a given

result, e.g. an export, can be written in multiple ways. This section provides suggestions on reducing

errors and improving performance of specific query structures.

A common source of errors is confusion on Attribute value equality in a selector. String equality is

represented by the EQUALS keyword, while the equals character “=” corresponds to numeric equality

based on calculation of the numeric head. Use of EQUALS (including with wild cards) is typically much

more efficient (faster) than numeric equality since the former takes advantage of internal DTS methods

while the latter requires an application level search over all Concepts in the current context. As a

reminder, string operations have word operators (like EQUALS and MATCHES) while numeric

operations use punctuation operators (“=” and “>”).

Some select-concept-op operators duplicate functionality available in other selector operations. As an

example, the selectors:

PARENT EQUALS “My Concept” and
CONCEPT CHILD_OF “My Concept”

are equivalent. The two forms are implemented identically. The choice of selector form should be

made based on query clarity.

One way to think of selector combinations is that the result of a selector is an internal ConSet. Thus

the selectors expression selectorA OR selectorB results in the computation of the union of two

ConSets. Similarly selectorA AND selectorB results in an intersection computation. In general,

the TQL engine executes each selector independently. Thus this expression:

myprop > 3 AND myprop < 10

causes two complete searches of every Concept in the current context.

As mentioned in the discussion of selectors in The Terminology Query Language section, searches

over every Concept in a large context, such as SNOMED CT, may result in failed queries due to

memory overrun errors on the DTS server or client. For some queries, these errors can be avoided by

use of specific query techniques. First, use of an explicit ConSet can remove a potential problem. Thus,

if it is desired to see all ICD-9-CM concepts in the PROCEDURES tree that have a code less than “80.”,

one could use:

FROM [^ICD-9-CM^] WITH ANCESTOR EQUALS “PROCEDURES [00-99.99]”

AND ^Code in Source^ < 80 EXPORT … ;

The problem is that the second selector must individually search all Concepts in ICD-9-CM,

potentially resulting in a fatal error. One solution is to first create a ConSet as:

CREATE ICDprocs FROM [^ICD-9-CM^]

WITH ANCESTOR EQUALS “PROCEDURES [00-99.99]”;

TQL Editor User Guide V4.7.2 Page 45

This query is safe since the ANCESTOR EQUALS … selector is optimized by the DTS API (see Table

4). Now the following export query will only search Concepts in the smaller named ConSet, removing

the potential error condition:

FROM ICDprocs WITH ^Code in Source[ICD-9-CM]^ < 80 EXPORT … ;

In fact, however, the original query would likely not result in a memory error because the TQL

interpreter optimizes AND operations in most cases. Specifically, the selector on the right of an AND

operator is applied to the (internal) ConSet resulting from the left selector of the AND rather than the

current context, performing an implicit AND. This optimization can be performed unless the selector

uses the Ancestor or Parent attribute. Thus the query can be safely executed. Note that reversing

the two selector elements loses this protection, since the new left selector (^Code in Source^ <

80)does require a full Concept search. The solution for this structure would be to use an explicit

ConSet as described earlier.

Next, consider a query that looks for all “active” ingredient Concepts in NDT-RT:

CREATE ActiveIngredients FROM [^NDF-RT^] WITH ^Level^ equals “Ingredient”

AND ANCESTOR NOT_EQUALS “TO BE DELETED INGREDIENT PREPARTATIONS”;

Since Ancestor is used in the right hand selector, the AND optimization cannot be applied. With the

full-concept-search NOT_EQUALS operator in the selector, a memory error could be generated. The

solution is to use the NOT_AND connector with the DTS-enabled EQUALS selector operator:

CREATE ActiveIngredients FROM [^NDF-RT^] WITH ^Level^ equals “Ingredient”

AND_NOT ANCESTOR EQUALS “TO BE DELETED INGREDIENT PREPARTATIONS”;

This query should execute successfully.

Finally, remember that qualifiers are not individually indexed in DTS. Thus any query selector which

contains a Qualifier Type must retrieve all the instances of the independent Attribute (Property Type or

Association Type) and then test any associated qualifiers as specified in the selector.

TQL Editor User Guide V4.7.2 Page 46

Using the TQL Class

In addition to using the TQL Editor, TQL queries can be executed in two ways: in a standalone, or

“batch” mode, using a batch file such as TQL.bat (found in the DTSInstall\bin\tqleditor folder), or

directly from Java applications using the TQL Class. Use of either of these methods avoids GUI

overhead which can improve query processing time.

TQL.bat provides a simple mechanism to execute previously developed queries as part of routine

production processes. TQL.bat simply executes the main() method of the TQL Class. Use of the

TQL.bat, or an equivalent batch file, ensures that the DTS context, e.g. classpath variable, are set up

appropriately.

TQL.bat passes required parameters such as connection values and file names to the TQL Class via

position-independent key word/value pairs. If no parameters are provided on the TQL command, the

program will prompt for values from the console. The available parameters are:

-host:hostname Required. The name of the DTS host (server) system.

-port:portnumber Required. The port number of the DTS host (server) system.

-instance:instance Required. The name of the DTS Server instance on the app server.

-user:username Required. The application server username.

-psw:password Required. The application server user password.

-query:filename Required. The name of the TQL query file. Must have an extension of

tql.

-output:filename Optional. The name of the output file. Must have an extension of txt,

xml,xls, or xlsx.

-delim:delimiter Optional. The one or two character delimiter. The first character is the

field delimiter and the second character (if present) is the group

delimiter. If missing, TQL defaults will apply “|:”.

-header:header Optional. “Y” to include a header line in export files, or “N” otherwise.

If not present, a header is written.

-log:filename Optional. The name of the log file to be used. If not present, the default

TQL log file name, TQL.log, is used.

An example TQL command line is shown below:

TQL -user:manager -psw:password -host:localhost -port:4447

-instance:dtsjboss -query:myquery.tql -output:export.txt

-log:”demo log.log”

Note the use of quotes around the log file parameter value since the value contains a space. Quote

marks can be used around any value but are required if the value contains a space.

For information on using the TQL Class directly by a Java application see the TQL Javadoc file in the

DTSInstall\bin\tqleditor folder.

TQL Editor User Guide V4.7.2 Page 47

Table 2 – TQL Attribute Keywords

Attribute Name Usage Description
CONCEPT EFS The Concept itself.

CONCEPT_NAME EFS The Concept Name.
CONCEPT_CODE EFS The Concept Code.
CONCEPT_ID EFS The Concept Id.

CONCEPT_STATUS EFS The Concept Status.
TERM EFS The Term itself.

TERM_NAME EFS The Term Name.
TERM_CODE EFS The Term Code.
TERM_ID EFS The Term Id.

TERM_STATUS EFS The Term Status.
NAME EFS Alias for CONCEPT_NAME or TERM_NAME.
CODE EFS Alias for CONCEPT_CODE or TERM_CODE.
ID EFS Alias for CONCEPT_ID or TERM_ID.

STATUS EFS Alias for CONCEPT_STATUS or TERM_STATUS.
NAMESPACE EFS The name of the Concept’s or Term’s Namespace.

VERSION_NAME EFS The name of the Version for a Concept or Term snapshot.
VERSION_DATE EFS The date of the Version for a Concept or Term snapshot.
PREFERRED_NAME EFS The Preferred Term (Synonym) of the Concept. Returns the

empty string if there is no preferred Synonym.
RESOLVED_NAME EFS The Preferred Name if one exists, otherwise the Concept Name
QUALIFIED_NAME EFS The ConceptName followed by the Namespace in brackets

PRIMITIVE EFS The Primitive Attribute of a Concept in an Ontylog or Ontylog

Extension Namespace. The value is “Primitive” or “Defined”.
SYNOMYM EF The Concept’s Synonyms.
PROPERTY EF The Concept’s or Term’s Properties.

ASSOCIATION EF The Concept’s or Term’s Associations.
ROLE EF The Concept’s Roles.
KIND EFS The name of the Concept’s Kind.
SUBSET EFS The name of the Subsets in which the Concept participates.

DEFINING_CONCEPT EFS The Defining Concepts associated with a Concept in an Ontylog

or Ontylog Extension Namespace.
CHILD EFS The Concept’s Children (Subconcepts). For Thesaurus

Namespaces, the inverse AXIS association is used.
DESCENDANT EFS The Concept’s Descendants (recursive Subconcepts). For

Thesaurus Namespaces, the AXIS association is used.
PARENT EFS The Concept’s Parents (Superconcepts). For Thesaurus

Namespaces, the AXIS association is used.
PARENT_PLUS S Same as above but collection includes the Parent Concept.
ANCESTOR S The Concept’s Ancestors (recursive Parents). For Thesaurus

Namespaces, the AXIS association is used.
ANCESTOR_PLUS S Same as above but collection includes the Ancestor Concept.

Notes: E = valid as export attribute F = valid as function argument S = valid as selector attribute

TQL Editor User Guide V4.7.2 Page 48

Table 3 – TQL Selector Operators

Operator String Right Operand

Type

Decsription

MEMBER_OF context Referent Concept is a member of the

designated context.
NOT_MEMBER_OF context Referent Concept is not a member of the

designated context.
CHILD_OF Concept name

literal

Referent Concept is a proper child

(Subconcept) of the Concept referenced in

the literal. Not permitted in collections

whose context is a ConSet.
NOT_CHILD_OF Concept name

literal

Referent Concept is not a proper child

(Subconcept) of the Concept referenced in

the literal. Not permitted in collections

whose context is a ConSet.
CHILD_OF_PLUS Concept name

literal

Same as CHILD_OF but referent Concept

can also be equal to the Concept

referenced in the literal. Not permitted in

collections whose context is a ConSet.
NOT_CHILD_OF_PLUS Concept name

literal

Same as NOT_CHILD_OF but referent

Concept can also be equal to the Concept

referenced in the literal. Not permitted in

collections whose context is a ConSet.
DESCENDANT_OF Concept name

literal

Referent Concept is a descendant

(recursive Subconcept/Child) of the

Concept referenced in the literal. Not

permitted in collections whose context is a

ConSet.
NOT_DESCENDANT_OF Concept name

literal

Referent Concept is not a descendant

(recursive Subconcept/Child) of the

Concept referenced in the literal. Not

permitted in collections whose context is a

ConSet.
DESCENDANT_OF_PLUS Concept name

literal

Same as DESCENDANT_OF but referent

Concept can also be equal to the Concept

referenced in the literal. Not permitted in

collections whose context is a ConSet.
NOT_DESCENDANT_OF_PLUS Concept name

literal

Same as NOT_DESCENDANT_OF but

referent Concept can also be equal to the

Concept referenced in the literal. Not

permitted in collections whose context is a

ConSet.
EQUALS String literal

(wildcards allowed)

String value of Attribute equals the literal.

NOT_EQUALS String literal

(wildcards allowed)

String value of Attribute does not equal

the literal.

TQL Editor User Guide V4.7.2 Page 49

FOLLOWS String literal String value of the Attribute lexically

follows the literal.
PRECEDES String literal String value of the Attribute lexically

precedes the literal.
EXISTS None At least on instance of the Attribute exists

on the referent Concept. Same as EQUALS
*

NOT_EXISTS None The Attribute does not exist on the

referent Concept. Searches across the full

context.
MATCHES Regular Expression

string literal

Attribute value matches the RegEx. See

Appendix B for detailed RegEx

information.
NOT_MATCHES Regular Expression

string literal

Attribute value does not match the

RegEx. See Appendix B for detailed

RegEx information.
IN_RANGE Numeric literal “:”

numeric literal

Numeric interpretation of the Attribute

value lies between the lower limit and

upper limit (inclusive)
NOT_IN_RANGE Numeric literal “:”

numeric literal

Numeric interpretation of the Attribute

value does not lie between the lower limit

and upper limit (inclusive)
= Numeric literal Numeric interpretation of the Attribute

value equals the numeric literal.
<> Numeric literal Numeric interpretation of the Attribute

value does not equal the numeric literal.
< Numeric literal Numeric interpretation of the Attribute

value is less than the numeric literal.
<= Numeric literal Numeric interpretation of the Attribute

value is less than or equal to the numeric

literal.
> Numeric literal Numeric interpretation of the Attribute

value is greater than the numeric literal.
>= Numeric literal Numeric interpretation of the Attribute

value is greater than or equal to the

numeric literal.

TQL Editor User Guide V4.7.2 Page 50

Table 4 – TQL Selector Attribute/Operator Limitations

Attribute Operators

Concept

Op

EQUALS

&

EXISTS

NOT_EQUALS,

PRECEDES,

FOLLOWS,

MATCHES, &

NOT_MATCHES

NOT_EXISTS

Numeric

CONCEPT/TERM None None SW, FCS NA FCS, NH
CONCEPT_NAME &

TERM_NAME
NA None SW, FCS NA FCS, NH

CONCEPT_CODE,

CONCEPT_ID,

TERM_CODE & TERM_ID

NA SW SW, FCS NA FCS, NH

CONCEPT_STATUS &

TERM_STATUS
NA SW, FCS SW, FCS NA FCS, NH

PREFERRED_NAME NA SW SW, FCS FCS FCS, NH
PRIMITIVE NA FCS FCS FCS FCS, NH
KIND NA FCS FCS FCS FCS, NH
VERSION_NAME &

VERSION_DATE
NA FCS FCS FCS FCS, NH

SUBSET NA FCS FCS FCS FCS, NH
DEFINING_CONCEPT None FCS FCS FCS FCS, NH
PARENT, PARENT_PLUS,

CHILD, DESCENDANT,

ANCESTOR &

ANCESTOR_PLUS

None None SW, FCS FCS FCS, NH

Synonym Types NA None SW, FCS FCS FCS, NH

Property Types NA None SW, FCS FCS FCS, NH

Role Types None None SW, FCS FCS FCS, NH

Concept Association Types None None SW, FCS FCS FCS, NH

Functions NA FCS SW, FCS NA FCS, NH

Notes:

NA = Not Applicable or Not Allowed

SW = Case insensitive, Simplified Wild cards: foo, *foo, *foo*, foo* only

FCS = Full Concept Search in context; performance implications

NH = Comparison on Numeric Head

Table 5 – TQL Functions

Fnction Name Description
LENGTH Returns the string length of the Attribute argument.
COUNT Returns the number of instances of the Attribute argument on the selected

Concept.

TQL Editor User Guide V4.7.2 Page 51

Table 6 –TQL Variables

Variable Applies To Description
APPEND EXPORT If “Yes” or “True”, causes export data to be appended

to the export file. A new version of the file is not

created. The default value is “False”.
AXIS Hierarchy

operations and
DELETE_TREES

The name of the Concept Association (or Role in

Ontylog Namespaces), used as the parent-to-child “axis”

for hierarchy operations. The default is the null string,

corresponding to theSuperconcept/Subconcept

relationship for Ontylog Namespaces and the “Parent

Of” association for Thesaurus Namespaces. The AXIS

value can have the “INV” prefix to designate that the

actual association points from child to parent.
DATE_FORMAT expression The Java SimpleDateFormat format string for

outputting dates. The default is “dd-MMM-yyyy”. See

Appendix C for detailed format descriptions.
DELIMITER EXPORT The two character delimiter object used in text export

operations. The first character is the field delimiter and

the second (optional) character is the group delimiter.

The TQL default is the vertical bar or pipe “|” character

for the field delimiter and the colon (“:”) for the group

delimiter. Overrides the TQL Editor Field

delimiter for text textbox and the delimiter

argument on the TQL command line.
EXPORTFILE EXPORT The name of the desired export file. Overrides the Editor

Output file textbox and the output_file_name

argument on the TQL command line.
HEADER EXPORT “Yes” or “True” to include a header line in the output.

The TQL default is “Yes”. Overrides the TQL Editor

Include data header checkbox and the header

argument on the TQL command line.
LIMIT EXPORT If non-zero, limits the number of concept lines

exported.TQL default is “0” which means no limit.
PRUNE_TERMS DELETE_CONCEPTS

DELETE_TREES
“Yes” or “True” to delete orphan Terms when

Concepts or Synonyms are deleted. The TQL default is

“No”.
RETAIN_HEAD DELETE_TREES “Yes” or “True” to retain the named, “head”, concepts

when trees are deleted. The TQL default is “No”.
SIZE NA A read-only variable set to the size of the previous

collection.
TIME_FORMAT expression The Java SimpleDateFormat format string for

outputting times. The default is “h:mm a”. See

Appendix C for detailed format descriptions.
TYPEDEFS EXPORT_CONCEPTS

“Yes” or “True” to include Type Definitions in the

export. The TQL default is “False”.

TQL Editor User Guide V4.7.2 Page 52

UNIQUE EXPORT If “Yes” or “True”, only unique lines are exported.

Duplicates are not exported. The TQL default is

“False”.

Table 7 –Special Symbols for Use in Set/Update Literal Values

Code Replaced With
@D or @d The current date. Uses the DATE_FORMAT TQL Variable.
@T or @t The current time. Uses the TIME_FORMAT TQL Variable

Notes: The values returned from the above symbols are both computed from the current date/time

(Java Date()). The separation into a “date” and a “time” is conventional. The actual values returned

are completely determined by the format strings.

TQL Editor User Guide V4.7.2 Page 53

Revision History

Version 1.0 Initial release.

Version 1.1 Bug fixes. About dialog box. Local Concept Sets (Consets). CREATE statement. AND

optimization. AND_NOT operator. Removed restriction on use of numeric operators.

Copy and Select All supported in all text panels. Explicit field delimiter and

optional header line to TQL Editor and TQL.

Version 1.2 Support for DTS 3.4. TQL Comments. Subsets as contexts. Synonym Type support

added in selector and export expressions. Elapsed time in console status messages.

User Guide available in DTS Editor Help Menu and TQL Editor Help Menu. XML

output and export-xml-statement. Concept collection process modified to favor

collection of large Concept collections over speed (export CASD fetch is delayed).

Export Wizard removed. See specific XML export limitations in the Export XML

Statement section.

Version 1.3 Support for Ontylog and Ontylog Extension Namespaces (including Defined View

variables). Attribute category postfix syntax added.

Version 2.0 Create-statement for Subsets, delete-statement and edit-statement

added. Special value codes (@D and @T) added. TQL icon in DTS Editor Icon Bar.

Version 2.1 Minor changes to XML export formats to accommodate addition of XML Schemas.

Version 2.2 New capabilities added for XML exports: fielded exports (via the export-attributes-

statement) can be written to XML files, and the export-concepts-statement supports

Ontylog Namespaces, Subsets, and Consets as contexts. The export-subset-

statement added for Subset-consistent exports of Subsets. Term Properties and Term

Associations are now exported on the export-namespace-statement.

DTSPropertyTypes are available as a concept-string on exports. An argumented

form of the delete-concepts-statement has been added, as has a delete-trees-

statement for deletion of concept hierarchies.

Version 3.0 Major update. Multi-statement queries. LOG, PRINT and SET statements as well as

new statement forms. TQL variables and modifiers. New selector operators and

TQL Attributes. COUNT and LENGTH functions. Encoded expressions. Chooser

attributes are now sorted. TQL main() supports socket server connections. See the

V3 Release Notes for further details.

Version 3.1 Export to Excel files. CREATE_CONCEPTS and CREATE_TERMS statements.

Optional attribute values on delete-attributes-statement. delete-attributes-statement

and set-attributes-statement support Synonyms (including PRUNE_TERMS on

delete). Grouped export attributes. RegexHelper panel.

Version 3.2 TQL parameters and associated TQLCommander application. Parameter-statement

and constrain-statement. Multiple arguments supported in output-statement.

TQL Editor User Guide V4.7.2 Page 54

IN_RANGE operator added. Qualifier options on delete-attributes-statement and set-

attributes-statement. Encoded form supports fixed attributes.

Version 3.3 The delete-attributes-statement and set-attributes-statement support Defining Roles

and Defining Concepts for Extension Namespaces. Bugs fixed in Extension

Namespace hierarchy queries. GROUP qualifier for Roles. FOLLOWS and PRECEDES

string operators added. The output panel (optionally) displays line numbers and

supports drag of Concepts. The File|Preferences menu option selects whether

or not output lines are numbered. XML exports of Terms, Term Properties and

Term Associations include Term Ids to enable disambiguation of Terms with

identical names. The TQL Reference Guide pocket trifold added to distribution.

Version 3.4 Interim update for DTS V4.0. Changes to TQL class constructors and

TQLEditor.bat parameters.

Version 4.0 Major update for DTS V4.0. New capabilities include Term Collections, User

Variables, User Functions, and Value Expressions. Version and date qualification of

Namespace and Subset Contexts. Status support in Collections. Creation and

deletion of Namespaces and Authorities. DATE_FORMAT, TIME_FORMAT and SIZE

TQL Variables. New XML export formats support Namespace Properties, Version

Properties, and Subset Properties, Subset Version Properties and Subset Expression

(compatible with Import Wizard 4.1). Line numbering and Concept/Term drag from

Output panel.

Version 4.1 Query header line, block statements, and conditional (IF, ELSEIF, ELSE)

statements added. NAME, CODE, ID, STATUS, PROPERTY, ASSOCIATION,

and ROLE TQL Attributes created. SET, PRINT, and LOG arguments extended.

User Guide restructured and BNF updated.

Version 4.2 Bug fixes. FOR statement added for iterating over attribute instances. Anonymous

attributes introduced for conditional, export and output statements. Anonymous

attributes can be used in Subset, ConSet, TermSet and All Namespace contexts.

Version 4.3 Bug fixes. DTS Layout support updated. DESCENDANT keyword added as a

predicate and export attribute.

Version 4.4 Bug fix for support of Extension Roles in XML exports of Extension Namespaces.

Import requires Import Wizard Version 4.4.

Version 4.5 Update for DTS Version 4.5. Validators supported for Property and Qualifier edits.

XML exports include Validators, Kinds, Subset Version Properties, and non-local

Synonyms. New export xsds to support Ontylog Namespace exports. Ontylog

imports require Import Wizard Version 4.5. Ontylog and Ontylog Extension

Namespaces can be created. Kinds are listed in Attribute Chooser. Ability to specify

a target “sheet” for Excel output.

Version 4.5.1 XML Namespace exports support Defined Role Groups.

TQL Editor User Guide V4.7.2 Page 55

Version 4.5.2 Performance improvements in XML exports.

Version 4.6 Bug fix for error when exporting non-working versions of subsets.

Version 4.6.1 Performance improvements for Selectors with non-EQUALS operators.

Version 4.7 RENAME statement added. ‘Referencing’ syntax supported in selectors. Hierarchy

selectors correctly handle concept name literal that ends in a bracket.

Version 4.7.1 READ statement added. Significant enhancements to the Editor component

including syntactic element coloring and “smart” key processing. Bug fixes.

Version 4.7.2 Namespace and Subset exports now include non-local content properties.

Version 4.8 Performance improvements in Namespace and Subset exports.

TQL Editor User Guide V4.7.2 Page 56

Appendix A - Terminology Query Language Reference

This Appendix gives a formal definition of TQL syntax in a simplified BNF grammar. TQL elements

are in italics. Keywords are shown in upper case for clarity but are case-insensitive in TQL. Elements

are separated by whitespace. The symbol “|” denotes alternate elements while “[…]” denotes optional

elements. Literals may be enclosed in single or double quotes and standard Java character escapes for

single quote, double quote, tab and slash are supported. The caret (“^”) can also be escaped so that this

character can appear in attribute literals.

query := statement [query]

statement := collection-statement |

conditional-statement |

constrain-statement |

 create-context-statement |

 delete-context-statement |

 rename-context-statement |

 edit-statement |

export-statement |

for-statement |

output-statement |

parameter-statement |

read-statement |

set-statement

statement-block := statement

 “{“ statement-list “}”

statement-list := statement [statement-list]

collection-statement := FROM [collection-mods] collection [statement-block] “;”

collection-mods := collection-mod [collection-mods]

collection-mod := “/” CONCEPTS |

 “/” TERMS |

 “/” STATUS “=” status

status := ALL |

 ACTIVE |

 INACTIVE |

 DELETED

collection := ALL WITH selectors |

 context [WITH selectors]

context := “[“ namespace [“:” version-name] “]” |

 ‘[‘ namespace [“#” version-date] “]” |

TQL Editor User Guide V4.7.2 Page 57

“{“ subset [“:” version-name] “}” |

“{“ subset [“#” version-date] “}” |

“<” authority “>” |

conset |

termset

version-name := string-literal

version-date := string-literal

selectors := selector |

 selectors log-op selectors |

 (selectors)

log-op := AND | OR | AND_NOT

selector := select-attribute unop |

select-attribute select-string-op expression |

select-attribute select-member-op context |

select-attribute select-concept-op expression |

select-attribute select-numeric-op expression |

select-attribute select-range-op numeric-literal “:” numeric-literal |

function select-string-op expression |

 function select-numeric-op expression |

 function select-range-op numeric-literal “:” numeric-literal

select-attribute := CONCEPT |

CONCEPT_NAME |

 CONCEPT_CODE |

 CONCEPT_ID |

CONCEPT_STATUS |

TERM |

TERM_NAME |

 TERM_CODE |

 TERM_ID |

TERM_STATUS |

 NAMESPACE |

 NAME |

 CODE |

 ID |

 STATUS |

PREFERRED_NAME |

RESOLVED_NAME |

QUALIFIED_NAME |

PRIMITIVE |

KIND |

SUBSET |

DEFINING_CONCEPT |

TQL Editor User Guide V4.7.2 Page 58

 PARENT |

 PARENT_PLUS |

 ANCESTOR |

 ANCESTOR_PLUS |

 CHILD |

DESCENDANT |

DTSSynonymType [“ (SA)”] |

 DTSPropertyType [“ (CP)”] [. DTSPropertyQualifierType [“ (CPQ”)]] |

 DTSPropertyType [(“TP”)] [. DTSPropertyQualifierType [(“TPQ”)]] |

 [DEF] DTSRoleType [(“R”)] |

 [INV] DTSRoleType [(“R”)] |

 [INV] DTSConceptAssociationType [(“CA”)] |

 [. DTSAssociationQualifierType [(“CAQ”)]]

 [INV] DTSTermAssociationType [(TA)]

 [. DTSAssociationQualifierType [(“TAQ”)]]

select-string-op := EQUALS |

 NOT_EQUALS |

 MATCHES |

 NOT_MATCHES |

 FOLLOWS |

 PRECEDES

select-member-op := MEMBER_OF |

 NOT_MEMBER_OF

select-concept-op := CHILD_OF |

NOT_CHILD_OF |

 CHILD_OF_PLUS |

 NOT_CHILD_OF_PLUS |

 DESCENDANT_OF |

 NOT_DESCENDANT_OF |

 DESCENDANT_OF_PLUS |

 NOT_DESCENDANT_OF_PLUS

select-numeric-op := “=” |

 “<>” |

 “>” |

 “>=” |

 “<” |

 “<=”

select-range-op := IN_RANGE |

 NOT_IN_RANGE

select-unop := EXISTS |

NOT_EXISTS

conditional-statement := IF predicates statement-block |

TQL Editor User Guide V4.7.2 Page 59

ELSE statement-block |

ELSEIF predicates statement-block

predicates := predicate |

 predicates log-op predicates |

 (predicates)

predicate := selector |

 variable unop |

variable select-string-op expression |

variable select-numeric-op expression |

variable select-range-op numeric-literal “:” numeric-literal

create-context-statement := CREATE “<” authority “>” “;”

CREATE “[“ namespace “:” authority

[“:” nstype [“:” linked_namespace]] “]” “;” |

CREATE create-context FROM[/TERMS] collection “;” |

 CREATE create-context FROM build-context log-op build-context “;”

nstype := THESAURUS |

 ONTYLOG |

 ONTYLOG_EXTENSION

create-context := “{“ subset “:” authority ”}” |

 conset |

termset

build-context := “{“ subset”}” |

 conset |

termset

delete-context-statement:= DELETE context “;”

rename-context-statement:= RENAME context TO context “;”

edit-statement := CREATE_CONCEPTS [create-concepts-mod] create-concepts-list “;” |

CREATE_TERMS [create-terms-mod] create-terms-list “;” |

DELETE_CONCEPTS [delete-concepts-mods] “;” |

DELETE_CONCEPTS [delete-concepts-mods] concept-list “;” |

DELETE_TREES [delete-trees-mods] “;” |

DELETE_TREES [delete-trees-mods] concept-list “;” |

DELETE_TERMS[delete-terms-mods] “;” |

DELETE_TERMS[delete-terms-mods] term-list “;” |

DELETE [delete-attr-mod] delete-attr-list “;” |

SET set-attr-list “;” |

UPDATE update-attr-list “;”

create-concepts-list := concept [“:” string-literal [“:” integer]] [“,” create-concepts-list] |

TQL Editor User Guide V4.7.2 Page 60

 concept [“::” integer] [“,” create-objects-list]

create-concepts-mod := ”/” IGNORE_EXISTENCE

create-terms-list := term [“:” string-literal [“:” integer]] [“,” create-terms-list] |

 term [“::” integer] [“,” create-objects-list]

create-terms-mod := ”/” IGNORE_EXISTENCE

concept-list := concept [“,” concept-list]

term-list := term [“,” term-list]

delete-concepts-mods := delete-concepts-mod [delete-concepts-mods]

delete-concepts-mod := ”/” IGNORE_EXISTENCE |

 “/” PRUNE_TERMS [“=” boolean-literal] |

 “/” PERMANENT

delete-terms-mods := delete-terms-mod [delete-term-mods]

delete-terms-mod := ”/” IGNORE_EXISTENCE |

 “/” PERMANENT

delete-tree-mods := delete-tree-mod [delete-tree-mods]

delete-tree-mod := “/” AXIS “=” string-literal |

 ”/” IGNORE_EXISTENCE |

“/” PRUNE_TERMS [“=” boolean-literal] |

 “/” RETAIN_HEAD [“=” boolean-literal] |

 “/” PERMANENT

delete-attrs-mod := “/” PRUNE_TERMS [“=” boolean-literal]

delete-attr-list := delete-attribute [“=” expression [“.” expression]] [“,” delete-attr-list]

delete-attribute : DTSPropertyType [”(CP)”]

 [”.” DTSPropertyQualifierType [“(CPQ)”]] |

 DTSPropertyType [”(TP)”]

 [”.” DTSPropertyQualifierType [“(TPQ)”]] |

DTSSynonymType [”(SA)”] |

 DEFINING_CONCEPT |

 DEF DTSRoleType [”(R)”] |

[INV] DTSConceptAssociationType [”(CA)”]

[”.” DTSAssociationQualifierType [“(CAQ)”]] |

[INV] DTSTermAssociationType [”(TA)”]

[”.” DTSAssociationQualifierType [“(TAQ)”]]

set-attr-list := (set-attr-arg | set-var-arg) [“,” set-attr-list]

TQL Editor User Guide V4.7.2 Page 61

set-attr-arg := set-attribute ”=” expression [“.” expression]

set-attribute := CONCPT_NAME |

CONCEPT_STATUS |

TERM_NAME |

TERM_STATUS |

DTSPropertyType [”(CP)”]

[”.” DTSPropertyQualifierType [“(CPQ)”]] |

 DTSPropertyType [”(TP)”]

 [”.” DTSPropertyQualifierType [“(TPQ)”]] |

 DTSSynonymType [”(SA)”] |

 DEFINING_CONCEPT |

 DEF DTSRoleType [”(R)”] |

 [INV] DTSConceptAssociationType [“(CA)”]

[”.” DTSAssociationQualifierType [“(CAQ)”]] |

[INV] DTSTermAssociationType [”(TA)”]

[”.” DTSAssociationQualifierType [“(TAQ)”]]

update-attr-list := set-attr-arg [“,” update-attr-list]

export-statement := EXPORT_CONCEPTS [export-concepts-mods] “;” |

EXPORT_CONCEPTS [export-concepts-mods] “;” |

EXPORT_SUBSET [export-subset-mod] “;” |

 EXPORT_NAMESPACE [export-namespace-mod] “;” |

EXPORT [export-mods] export-list [SORTED_BY sort-list] “;”

export-concepts-mods := export-concepts-mod [export-concepts-mods]

export-concepts-mod := “/” EXPORTFILE “=” string-literal |

 “/” SUBSET_VIEW [“=” boolean-literal] |

 “/” TYPEDEFS [“=” boolean-literal]

export-subsets-mod := “/” EXPORTFILE “=”string-literal

export-namespace-mod := “/” EXPORTFILE “=”string-literal

export-mods := export-mod [export-mods]

export-mod := “/” APPEND [“=” boolean-literal] |

 “/” DATE_FORMAT “=”string-literal |

“/” DELIMITER “=”string-literal |

“/” EXPORTFILE “=”string-literal |

 “/” HEADER “=”boolean-literal |

“/” LIMIT “=” integer-literal |

 “/” TIME_FORMAT “=”string-literal |

 “/” UNIQUE [“=” boolean-literal]

TQL Editor User Guide V4.7.2 Page 62

for-statement:= for-attr statement-block

for-attr:= [INV] SYNONYM |

PROPERTY |

[INV] ASSOCIATION |

ROLE |

 PARENT |

 CHILD |

DESCENDANT |

 DEFINING_CONCEPT |

 DTSSynonymType [“(SA)”] |

 DTSPropertyType [“(P)”] |

 [DEF] DTSRoleType [“(R)”] |

 [INV] DTSRoleType [“(R)“] |

[INV] DTSConceptAssociationType [“(CA)”] |

[INV] DTSTermAssociationType [“(TA)”]

set-statement := SET set-var-list “;”

set-var-list := set-var-arg [”,” set-var-list]

set-var-arg := variable “=” expression

variable := APPEND |

AXIS |

DATE_FORMAT |

TIME_FORMAT |

 DELIMITER |

 EXPORTFILE |

 HEADER |

LIMIT |

 PRUNE_TERMS |

 RETAIN_HEAD |

 SIZE | //read-only, cannot be used in a set-statement

TYPEDEFS |

UNIQUE |

”%” name-string |

read-variable //read-only, cannot be used in a set-statement

output-statement := LOG output-list “;” |

 PRINT output-list “;”

output-list := expression [“,”expression]

read-statement := READ [read-mods] expression statement-block

read-mods := read-mod [read-mods]

TQL Editor User Guide V4.7.2 Page 63

read-mod := “/” DELIMITER “=”string-literal |

“/” HEADER “=”boolean-literal |

“/” LIMIT “=” integer-literal |

read-variable := ”$” digit-char

parameter-statement := PARAMETER parameter-list “;”

parameter-list := parameter-arg [“,” parameter-list]

parameter-arg := parameter [”:”[parameter-type] [”:” help-string]]

parameter := ”@” string ”@”

parameter-type := CONCEPT |

 TERM |

 INTEGER |

 NUMBER |

 BOOLEAN |

 FILE |

 STRING

help-string : = string-literal

constrain-statement := CONSTRAIN parameter TO constrain-list “;”

constrain-list := constrain-arg [”,” constrain-list]

constrain-arg := select-string-op expression |

select-member-op context |

select-concept-op expression |

select-numeric-op expression |

select-range-op numeric-literal “:” numeric-literal

expression := expr-element [expr-op expression]

expr-element:= parameter |

 function |

 select-attribute |

variable |

 string-literal

expr-op := “+” | “-“ | “&”

function := COUNT ”(” function-arg ”)” |

 LENGTH ”(” function-arg ”)” |

 ”%” name-string ”(” function-arg ”)”

TQL Editor User Guide V4.7.2 Page 64

function-arg := select-attribute |

 SYNONYM |

 PROPERTY |

 ASSOCIATION |

 ROLE

export-list := export-arg [, export-list]

export-arg := ”(” export-expr ”)” |

export-expr

export-expr:= export-expr-element [expr-op export-expr]

export-expr-element := expr-element |

CONCEPT “->” concept-disp-attr |

TERM “->” term-disp-attr |

SYNONYM [“.” TYPE] |

SYNONYM[“.” VALUE |

 SYNONYM “->” term-disp-attr |

 INV SYNONYM “->” concept-disp-attr |

PROPERTY [“.” TYPE] |

PROPERTY “.” VALUE |

ASSOCIATION [“.” TYPE] |

ASSOCIATION “.” VALUE |

ROLE [“.” TYPE] |

ROLE “.” VALUE |

 PARENT “->” concept-disp-attr] |

 CHILD “->” concept-disp-attr |

DESCENDANT “->” concept-disp-attr |

 DEFINING_CONCEPT “->” concept-disp-attr |

 DTSSynonymType [“(SA)”] “->” term-disp-attr |

 DTSPropertyType [“(P)”] “|” encode-attr [->” concept-disp-attr] |

 DTSPropertyType [“(P)”] “|”DTSPropertyType [“(P)”] [->” concept-disp-attr] |

 [DEF] DTSRoleType [“(R)”] [.GROUP] |

 [INV] DTSRoleType [“(R)“] [.GROUP] |

 [DEF] DTSRoleType [“(R)”] “->” concept-disp-attr |

 [INV] DTSRoleType [“(R)”] “->” concept-disp-attr |

[INV] DTSConceptAssociationType [“(CA)”] “->” concept-disp-attr |

[INV] DTSTermAssociationType [“(TA)”] “->” term-disp-attr

encode-attr := CONCEPT_NAME [“[“ namespace “]”] |

CONCEPT_CODE [“[“ namespace “]”] |

CONCEPT_ID [“[“ namespace “]”]

concept-disp-attr := CONCEPT_NAME |

 CONCEPT_CODE |

 CONCEPT_ID |

CONCEPT_STATUS |

 NAMESPACE |

TQL Editor User Guide V4.7.2 Page 65

 NAME |

 CODE |

 ID |

 STATUS |

 PRIMITIVE |

KIND |

 PREFERRED_NAME |

 QUALIFIED_NAME |

 RESOLVED_NAME |

 DTSPropertyType [“(CP)”]

term-disp-attr := TERM_NAME |

 TERM _CODE |

 TERM _ID |

TERM_STATUS |

NAME |

CODE |

ID |

STATUS |

 DTSPropertyType [“(TP)”]

sort-list := sort-attribute [, sort-list]

sort-attribute := concept-string | sort-attribute must exist in export-list

 SYNONYM |

 PROPERTY |

 ASSOCIATION |

 ROLE |

 PARENT |

 CHILD |

 DESCENDANT |

 DTSSynonymType [“(SA)”] |

 DTSPropertyType [“(CP)”] |

 DTSPropertyType [(TP)”] |

 DTSRoleType [“(R)”] |

DTSConceptAssociationType [“(CA ”] |

DTSConceptAssociationType [“(TA)”]

string-literal := “ string “ |

 ‘ string ‘

numeric-literal := parameter |

integer [”.” [integer]] |

 ” integer [”.” [integer]] ” |

 ’ integer [”.” [integer]] ’

integer-literal := parameter |

TQL Editor User Guide V4.7.2 Page 66

integer |

 ” integer ” |

 ’ integer ’

boolean-literal := parameter |

”TRUE” |

’TRUE’ |

”FALSE ” |

’FALSE’

namespace := name-string | “^” string “^” | variable

linked_namespace := name-string | “^” string “^” | variable

subset := name-string | “^” string “^” | variable

authority := name-string | “^” string “^” | variable

conset := name-string | “^” string “^” | variable

termset := name-string | “^” string “^” | variable

concept := name-string | “^” string “^” | string-literal | variable

term := name-string | “^” string “^” | string-literal | variable

name-string := name-char [name-string]

name-char := alpha-char | digit-char | “_”

integer := digit-char [integer]

comment := -- comment text to end of line |

 /* comment text */

TQL Editor User Guide V4.7.2 Page 67

Appendix B - Regular Expression Primer

Regular Expressions are a technique to match and/or manipulate string values. Using a Regular

Expression (or ‘RegEx’), it is possible to search for attributes whose value matches a pattern, validate

that an input value matches a given pattern, or even edit a value based on a pattern. TQL supports the

first use-case through its MATCHES operator. The Import Wizard Module supports the second and

third use-cases via its Parameter Filter functions.

RegExes are very powerful and potentially confusing. At one level, a RegEx pattern is simply a text

string, but this string can incorporate a number of special formats that enable quite sophisticated

matching. To test for a valid email address, for example, you could use the RegEx pattern:

[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}

The objective of this Primer is to describe the basic elements of RegExes and show how they can be

used for simple pattern matching in TQL. By the end of the Primer, you should be able to explain the

RegEx above! For a comprehensive discussion of regular expressions, see the regular expression

tutorial at http://www.regular-expressions.info/.

Follow along with the examples below by opening the TQL RegEx Helper dialog (shown below). This

dialog lets you test RegEx expressions and review the RegEx Reference document.

Matching Literals

In the simplest RegEx patterns, the characters stand for themselves. So to see if a value equals “abc” in

TQL, use the following (since the RegEx is itself a string, it must be surrounded in quotes):

value MATCHES “abc”

As will be discussed below, certain characters have special meanings and cannot be used literally in a

RegEx. The special characters are the backslash ‘\’, the caret ‘^’, the dollar sign ‘$’, the period or dot

‘.’, the vertical bar or pipe symbol ‘|’, the question mark ‘?’, the asterisk or star ‘*’, the plus sign ‘+’,

the opening parenthesis’(‘, the closing parenthesis ‘)’, the opening square bracket ‘[‘, and the opening

curly brace ‘{‘. To match these characters literally in a RegEx, they must be preceded (“escaped”) with

a backslash. To match the string “$15.50”, for example, use:

value MATCHES “\$15\.50”

http://www.regular-expressions.info/

TQL Editor User Guide V4.7.2 Page 68

Character Classes

Character classes are a way to denote that one of a number of characters is permissible for a match. In

a RegEx, you describe a character class by surrounding the class “definition” with square brackets. To

match an ‘a’ or an ‘e’, use ‘[ae]’. The RegEx ‘gr[ae]y’ would match either ‘gray’ or ‘grey’. Note that a

character class matches only a single character; ‘gr[ae]y’ does not match ‘graay’ or ‘greay’ or any

other string. The order of the characters inside a character class does not matter.

You can use a hyphen inside a character class to specify a range of characters: ‘[0-9]’ matches a

single digit between 0 and 9. You can include more than one range in a class: ‘[0-9a-fA-F]’ matches

a single hexadecimal digit, case insensitively. And you can combine ranges and single characters:

‘[0-9a-fXA-F]’ matches a hexadecimal digit or the letter X.

A caret after the opening square bracket negates the character class. The result is that the character

class matches any character that is not in the character class. So the RegEx ‘q[^x]’ matches the ‘qu’

in ‘question’, but does not match the ‘q’ in ‘qxyz’ or ‘Iraq’ (since there is no character after the q for

the negated character class to match).

Predefined Character Classes

RegExes support a number of predefined character classes to simplify writing of patterns. The most

common are:

. matches any character

\d matches a digit: [0-9]

\D matches a non-digit: [^0-9]

\s matches a whitespace character: [\t\n\x0B\f\r]

\S matches a non-whitespace character: [^\s]

\w matches a word-character: [a-zA-Z_0-9]

\W matches a non-word character: [^\w]

Use ‘abc\d’ to match ‘abc1’, ‘abc2’, etc., and ‘\w=3’ to match ‘a=3’, B=3’, and ‘6=3’.

Character Repetition

RegExes contain elements called “quantifiers” to signify that that a character (or character class) can

occur multiple times. If ‘X’ is a character or character class, the quantifiers are:

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X at least n but not more than m times

Note the difference between square and curly brackets. Square brackets denote a character class,

while curly brackets (braces) are for repetition.

Some examples:

‘\w+=\d+’ matches ‘var=34’ or any similar string.

‘abc.*’ is the same as starts with ‘abc’, while:

TQL Editor User Guide V4.7.2 Page 69

‘.*abc’ is ends with ‘abc’, and

‘.*abc.*’ is contains ‘abc’

‘[1-9][0-9]{3}’ matches a number between 1000 and 9999 and

‘[1-9][0-9]{2,4}’ matches a number between 100 and 99999.

Alternation and Grouping

Whole RegEx patterns can be alternated and grouped. To specify alternate RexEx patterns, use the

pipe character. The RegEx ‘cat|dog|fish’ matches “cat” or “dog” or “fish”. Alternation has the lowest

precedence of all RegEx operators so use parenthesis for grouping:

‘cat|dog food’ matches “cat” or “dog food”, but

‘(cat|dog) food’ matches “cat food” and “dog food”

Warning

Finally, be careful about the use of the backslash. Remember that backslashes in literals need to be

escaped. The RegEx Helper takes care of this automatically, so the examples in this Primer can be

entered as shown, but when writing TQL queries, always double backslashes. To use the last example

in the Matching Literals section, use:

value MATCHES “\\$15\\.50”

and to test that a value that contains a backslash, the following is required:

value MATCHES “.*\\\\.*”

TQL Editor User Guide V4.7.2 Page 70

Appendix C - Date Format String

Date and time formats are specified by date and time pattern strings from the Java

SimpleDateFormat class. The discussion below provides a simplified description of the format

string. Within date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are

interpreted as pattern letters representing the components of a date or time string. Text can be quoted

using single quotes (') to avoid interpretation. "''" represents a single quote. All other characters are not

interpreted; they're simply copied into the output string during formatting or matched against the input

string during parsing.

The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z' are

reserved):

Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time; PST; GMT-08:00

Z Time zone RFC 822 time zone -0800

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text: For formatting, if the number of pattern letters is 4 or more, the full form is used; otherwise a

short or abbreviated form is used if available. For parsing, both forms are accepted, independent of

the number of pattern letters.

• Number: For formatting, the number of pattern letters is the minimum number of digits, and

shorter numbers are zero-padded to this amount. For parsing, the number of pattern letters is

ignored unless it's needed to separate two adjacent fields.

• Year: The following rules are applied for year:

o For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits;

otherwise it is interpreted as a number.

TQL Editor User Guide V4.7.2 Page 71

o For parsing, if the number of pattern letters is more than 2, the year is interpreted literally,

regardless of the number of digits. So using the pattern "MM/dd/yyyy", "01/11/12" parses

to Jan 11, 12 A.D.

o For parsing with the abbreviated year pattern ("y" or "yy"), the format string must interpret

the abbreviated year relative to some century. It does this by adjusting dates to be within 80

years before and 20 years after the current time. For example, using a pattern of

"MM/dd/yy", the string "01/11/12" would be interpreted as Jan 11, 2012 while the string

"05/04/64" would be interpreted as May 4, 1964. During parsing, only strings consisting of

exactly two digits, will be parsed into the default century. Any other numeric string, such as

a one digit string, a three or more digit string, or a two digit string that isn't all digits (for

example, "-1"), is interpreted literally. So "01/02/3" or "01/02/003" are parsed, using the

same pattern, as Jan 2, 3 AD. Likewise, "01/02/-3" is parsed as Jan 2, 4 BC.

Otherwise, specific forms are applied. For both formatting and parsing, if the number of pattern

letters is 4 or more, a long form is used. Otherwise, short or abbreviated form is used.

• Month: If the number of pattern letters is 3 or more, the month is interpreted as text; otherwise, it

is interpreted as a number.

• General time zone: Time zones are interpreted as text if they have names. For time zones

representing a GMT offset value, a number is used.

• RFC 822 time zone: For formatting, the RFC 822 4-digit time zone format is used.

Examples

The following examples show how date and time patterns are interpreted in the U.S. locale. The given

date and time are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.

Date and Time Pattern Result
"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT
"EEE, MMM d, ''yy" Wed, Jul 4, '01
"h:mm a" 12:08 PM
"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time
"K:mm a, z" 0:08 PM, PDT
"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM
"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700
"yyMMddHHmmssZ" 010704120856-0700
"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2001-07-04T12:08:56.235-0700

TQL Editor User Guide V4.7.2 Page 72

Appendix D – Writing a User Function

This Appendix describes how to write a TQL User Function. A User Function, identified in a TQL

query by a name which begins with a percent sign (“%”), is a user-developed extension to TQL. A

User Function is created by writing a Java class that implements the TQLFunction interface class. This

class, packaged in a jar file and placed in the classpath, e.g., lib\modules, is recognized by TQL on

start-up and can subsequently be used in expressions in the same way as a TQL Function.

The TQLFunction class defines the following required methods:

String getName()

Returns the base name of this user function (without the initial "%").

boolean isAggregator()

Returns whether the function returns one value for each extractValues argument object or

one value for all the arguments (an aggregator). The value of this method is typically false.

Some functions, such as COUNT, are aggregators and must be handled as 'independent' export

attributes. In this case, they must return true to isAggregator() and the length of the

returned array will be one, not the size of the argument array.

boolean forceFullSearch(String op, String value)

Returns whether this function as used in a selector with the operator op and argument value

should search all objects in the TQL context. This is typically false and search

optimizers/accelerators can be used. The COUNT function, on the other hand, must search all

concepts when a value of zero is acceptable: COUNT(MyProp) < 2. In this case,

forceFullSearch must return true to inhibit optimization. Returning true generally has

negative performance implications.

String validateArgument(TQLField field)

Returns the empty string if the specified function argument is valid, otherwise returns an error

message. Called during query parse. TQLField is an object that encapsulates all TQL Attribute

forms: TQL Variables, User Variables, and Attribute references.

String[] extractValues(Object[] objs, TQLField field)

Returns the result(s) of the function as applied to the argument objects. The field argument

can be used to determine the type of object used in the invocation if multiple types are

permitted, e.g. an inverse association vs. a regular association. objs is the array of objects

resulting from evaluating the function’s argument, and field is the object that defines the

argument type. Returns a String array of function values, this array can be of different size than

objs.length.

To simplify coding of User Functions, TQL includes the TQLFunctionAdapter class that provides

default implementations of the TQLFunction methods. User Function classes can extend this class to

get default behaviors. At a minimum, the getName and extractValues methods must be

overridden. A helper method is included for extracting the default string value of an attribute.

public String getName()

Returns the empty string. Must be overridden.

TQL Editor User Guide V4.7.2 Page 73

public boolean isAggregator()

Returns false.

public boolean forceFullSearch(String op, String value)

Returns false.

public String validateArgument(TQLField field) {

Returns success: the empty string.

public String[] extractValues(Object[] objs, TQLField field)

Returns an array containing the result of extractValue for each of the arguments. The

field argument is not used. Must be overridden.

protected String extractValue(Object obj, TQLField field) {

Returns the default string value of a DTS Attribute, e.g. name of a Concept, the name of the

target Concept for a ConceptAssociation.

For additional information on the TQLFunction, TQLFunctionAdapter, TQLField and utility

QualifiedObject classes, see the TQL Javadoc file in the DTSInstall\bin\tqleditor folder.

The listing below shows the code for the TQL User Function %REVERSE(arg). This function accepts

a DTSPropertyType as an argument and returns, via the extractValues method, the Property values

with their characters reversed.

import com.apelon.dts.client.attribute.DTSProperty;

import com.apelon.dts.client.attribute.DTSPropertyType;

import com.apelon.modules.dts.editor.tql.beans.TQLField;

/**

 * Sample TQL User Function that reverses the value of a Property

 * <p>

 * Copyright (c) 2013 Apelon, Inc. All rights reserved.

 * @since 4.0

 */

public class ReverseFunction extends TQLFunctionAdapter {

 public String getName() {

 return "Reverse";

 }

 public String validateArgument(TQLField field) {

 if (field!=null && field.getAttribute()!=null &&

(field.getAttribute().getObject() instanceof DTSPropertyType))

 return "";

 return "Argument of REVERSE function must be a Property Type.";

 }

 public String[] extractValues(Object[] objs, TQLField field) {

 String[] results = new String[objs.length];

 for (int i=0; i<objs.length; i++) {

TQL Editor User Guide V4.7.2 Page 74

 results[i] = (objs[i] instanceof

DTSProperty)?reverse(((DTSProperty)objs[i]).getValue()):"";

 }

 return results;

 }

 //reverse the characters in a string

 private String reverse(String s) {

 StringBuffer sb = new StringBuffer();

 for (int i=s.length()-1; i>=0; i--)

 sb.append(s.charAt(i));

 return sb.toString();

 }

}

