

DTS 4: Internationalizing
DTS

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 2

Table of Contents
Introduction .. 3

Internationalizing the DTS Editor .. 3

Resource File Format .. 3

File Translation and Deployment .. 6

Running an Internationalized DTS Editor .. 6

Developing an Internationalized DTS Module .. 8

Textual Elements .. 8

String Composition ... 9

Application Layout .. 10

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 3

Introduction

The DTS Knowledgebase has always supported local language terminology data through its use of the UTF-8 format. But
UTF-8 doesn’t address local language requirements in the user interface. The Version 4 DTS Editor has been extensively
revised to facilitate internationalization (I18N) of the user interface. All prompts and messages are retrieved from a Java
resource file and layouts have been coded to take advantage of Java internationalization features to support component
orientations (left-to-right vs. right-to-left, and top-to-bottom vs. bottom-to-top).

This document has been designed to serve two purposes. First, to assist organizations wishing to internationalize the
Editor for their local languages, and second, to help DTS Editor Module developers in internationalizing their own
applications/modules. The Internationalizing the DTS Editor section addresses the first goal, while the Developing an
Internationalized DTS Module addresses the second.

Internationalizing the DTS Editor

Resource File Format

All textual elements of the DTS Editor: titles, prompts, messages, etc., are retrieved at run-time from Java standard
“resource” files. The base (English) resource file, dtseditor_en_US.properties, is provided in the

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 4

DTS_Install\lib\conf client directory. (A copy of this file is also included in the distribution jars as
dtseditor.properties. This instance provides an “ultimate fallback” copy of resources in case the conf directory
is compromised.) By creating copies of this file containing local language translations of the standard elements, the DTS
Editor presentation can be customized for different languages.

A Java resource file consists of a sequence of key/value pairs as shown below:

#DTSEditor

DTSEditor.Name=Apelon DTSEditor

#name version

DTSEditor.Title={0} {1}

DTSEditor.Splash.ReadingConfig=Reading DTSEditor configuration ''{0}'' ...

DTSEditor.Splash.InitializingLog=Initializing log file ''{0}'' ...

DTSEditor.Splash.BuildingMap=Building module map ...

DTSEditor.Splash.ReadingLayout=Reading layout ''{0}'' ...

DTSEditor.Splash.BuildingFrame=Building application frame ...

DTSEditor.Error.LayoutRead=Error reading layout.

DTSEditor.Error.Layout=Unknown layout error. See log file for details.

DTSEditor.Error.Module=Module error detected during layout. See log file for details.

DTSEditor.Error.ModuleTitle=DTSEditor Layout Error

DTSEditor.Error.Config=Error creating module configuration file.

DTSEditor.Error.Title=Error Launching DTS Editor

As shown above, most lines consist of an Editor key, DTSEditor.Name, an equal sign, and the value of the key, i.e., the
string displayed in the Editor: Apelon DTSEditor. Keys are structured to facilitate understanding of their usage
(context). The typical pattern is:

module_name [. component] . element

where brackets indicate an optional pattern “component”. Common component names are:

• Button – for button labels

• Error – for error messages

• Message – for non-error messages

• Menu – for menu and menu item names

• Popup – for popup item names

• Title – for frame and dialog title text

For example, the value of DTSEditor.Error.Layout is the error message displayed at Editor start for a layout error,
Common.Button.Save is the label for the “Save” button used by all modules, and Detail.Popup.Defined is the
text displayed in the Details Module popup for the Defined attribute.

Lines beginning with a hash mark are comments and are frequently used to further describe the meaning or use of the
following key/value pair(s).

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 5

Internationalization policies recommend against excessive run-time “composition” of messages due to differences in
tense, gender, plurals, etc. between languages. The DTS Editor does use some composition to limit the number of
elements needing translation or to address run-time components. For example:

DTSEditor.Splash.ReadingLayout=Reading layout ''{0}'' ...

embeds the name of the DTS Editor layout file in the splash message. Programmers will note that the format is that used
by the Java MessageFormat class. Replacement (parameter) values are designated by the parameter value’s positional
index in brackets. (Note that single quote marks must be doubled to prevent recognition as an “escape” character.)

This example shows a confirmation message with two parameters:

#Are you sure you want to delete the Concept 'foo'?

Common.Message.Delete=Are you sure you want to delete the {0} ''{1}''?

The comment provides an example of the element’s use. Note that the first (zeroth) parameter will itself be a translated
element, e.g., Common.Concept.

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 6

File Translation and Deployment

Translation of the resource properties file is typically performed using a translator’s favorite (local language) text editor.
The deployed version of the file, however, must be in ASCII format. Translated characters not in ASCII, such as those in
UTF-8 formats, must be represented by escapes, e.g.,:

DTSEditor.Menu.View=\u05ea\u05e6\u05d5\u05d2\u05d4

The native2ascii utility (http://native2ascii.net/#) can be very helpful to convert files in “native” representations to
the required ASCII format.

Once the translated ASCII resource file has been prepared, it must be saved in the DTS_Install\lib\conf client
directory with a proscribed file name consisting of the base resource name, dtseditor, an underscore (“_”) and a two-
character language code. It is typical, but not required, that the name be followed by another underscrore and a two-
character country code. Finally, the extension of the file must be properties.

The language code must be is a valid ISO Language Code. These codes are the lower-case, two-letter codes as defined by
ISO-639. You can find a full list of these codes at a number of sites, such as:
http://www.loc.gov/standards/iso639-2/englangn.html

If present, the country argument must be a valid ISO Country Code. These codes are the upper-case, two-letter codes as
defined by ISO-3166. You can find a full list of these codes at a number of sites, such as:
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

The following is the name of a resource file for the Hebrew language as used in Israel:
dtseditor_iw_IL.properties

The DTS Editor informs Java of the desired language/country selection by setting the system Locale in the JVM. The
Locale object specifies how locale-sensitive information is presented in the application. Locale-sensitive information
includes text flow (left-to-right vs. right-to-left), and default calendar or currency formats. For further details on Locale
processing, see the description of the Locale class in the Javadoc.

Running an Internationalized DTS Editor

To tell the DTSEditor to use a translation file, the language and country codes must be passed to the DTSEditorApp
application. These are specified as arguments in the DTS Editor command line:

"C:\Program Files\Apelon DTS 4.0\bin\runApp_cw.bat" 512 com.apelon.apps.dts.editor.DTSEditorApp –language=iw -country=IL

The order of the DTSEditorApp arguments is immaterial.

The DTS Editor uses the language and (optional) country arguments to locate the correct translation resource file. The
search is performed through a “family” of resource files (or ResourceBundles in Java terminology). DTS will first look
for the fully-specified resource file dtseditor_iw_IL.properties. If this file is not found, DTS looks for a “parent”
resource: dtseditor_iw.properties. And if this file is not found, the default, or base, file,
dtseditor.properties is used.

Once a resource file has been located, it is used to populate all the textual elements in the application. It is not
necessary that a specific “child” resource have translation entries for all key/value pairs. Elements not found in
dtseditor_iw_IL.properties, for example, will be “looked up” in dtseditor_iw.properties, and finally

http://native2ascii.net/
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 7

dtseditor.properties for resolution. These defaulted elements will not, of course, have been translated into the
local language, but the defaulting behavior can simplify the translation process. It is possible, for example, to only
translate common ”surface” terms and leave less frequently appearing error messages in the base language.

The effective (resolved) resource file also determines other attributes of the DTS Editor presentation, such as date/time
formats and presentation order. The Hebrew/Israel pair, for example, specifies that DTS element presentation should be
right-to-left, as opposed to the English left-to-right. The figure below shows this case:

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 8

Developing an Internationalized DTS Module

Developing an internationalizable module for DTS is not difficult, but does require that a few specific coding procedures
be followed. This section outlines the considerations that must be followed. Throughout the section, we will refer to
code snippets from the sample DTSMonitor module. This module is described more completely in the DTS Editor
Module Guide.

Textual Elements

The most obvious I18N requirement is the ability to easily translate the various titles, prompts, and messages used in the
module. As described in the first part of this document, the Java ResourceBundle class provides a convenient way for
module classes to abstract their textual elements to an appropriate properties file. From the application standpoint, the
requirement is to eliminate literal strings from the line-by-line code and replace them with logical references to entries
in the ResourceBundle.

Here is the beginning of SetCurrentLocalNamespacePanel, the panel called when setting the value of the Current
Local Namespace.

private static ResourceBundle resourceBundle =

ResourceBundle.getBundle(DTSEditorApp.EDITOR_RESOURCE);

 private static String CHOOSE_MESS = resourceBundle.getString("CLN.Message.Choose");

 private static String NO_SERVER_ERROR = resourceBundle.getString("CLN.Error.NoServer");

 private static String NAMESPACE_ERROR = resourceBundle.getString("Namespace.Error.Load");

 //these are the actual names for the UI

 private final static String NAMESPACE = resourceBundle.getString("Common.Namespace");

 private final static String OK = resourceBundle.getString("Common.Button.OK");

 private final static String CANCEL = resourceBundle.getString("Common.Button.Cancel");

In the first line, the program gets a reference to the DTS Editor ResourceBundle (through a DTSEditorApp constant).
The JVM will select the resource bundle based on the currently active (default) Locale. Subsequent lines reference keys
in the Bundle and assign the values to String constants. These constants can then be used as shown in the examples
below:

 lblMessage.setText(CHOOSE_MESS);

 bSubmit.setText(OK);

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 9

String Composition

It is usually not feasible, or even desirable, to require translation of all textual data in an application. Consider the
following example message:

Error deleting the Concept ‘Test’.

“Test” is the name of a Concept in the Knowledgebase. This value should not be translated and is only known at run-
time. There should, therefore, be a way for an application to construct a message from its pieces. Sometimes these
pieces will be run-time values, like “Test”, while other elements will be from “natural language” elements which should
be translated. Luckily, there is a standard Java way of addressing this problem: the Java MessageFormat class.

MessageFormat has lots of interesting capabilities, but for I18N purposes, we will focus on string substitution. In the
MessageFormat expression below:

MessageFormat.format(CONCEPT_DELETE_ERROR, con.getName());

the first argument is a reference string and the second argument, con.getName(), is substituted into the reference
string. The resource properties file value for CONCEPT_DELETE_ERROR would typically look like:

Common.Error.ConceptDelete=Error deleting the Concept ‘’{0}’’.

The “{0}” notation refers to the position for substitution of the first (zeroth) argument after the reference string in the
MessageFormat.format call. (Remember from the discussion above that single quote marks must be doubled to prevent
recognition as an “escape” characters.) So the name of the Concept will be substituted for the “{0}” notation.

MessageFormat makes substitution of run-time values very easy. But it can also be used to provide additional reduction
of translation effort. The example above is great for Concepts. But what about Terms? Do we need a different properties
entry:

Common.Error.TermDelete=Error deleting the Term ‘’{0}’’.

And what about Synonyms, Properties, Associations, etc.? Should we have separate entries, with associated translation
overhead, for each of these strings? One alternative would be to abstract out the DTS element name:

MessageFormat.format(DELETE_ERROR, CONCEPT, con.getName());

Common.Concept=Concept

Common.Error.Delete=Error deleting the {0} ‘’{1}’’.

Now we can translate the DTS element name “Concept” once and use it in the error message (and presumably in
prompts, other messages, etc.).

It would potentially be possible to carry this composition example one more level and use the following constructs:

MessageFormat.format(ACTION_ERROR, DELETING, CONCEPT, con.getName());

Common.Concept=Concept

Common.Deleting=deleting

Common.Error.Action=Error {0} the {1} ‘’{2}’’.

Now we can create elements for DELETING, ADDING, MODIFYING, etc., and all would use the same reference message,
greatly reducing the translation burden. While this works (perhaps) for English, other languages have different linguistic
characteristics, e.g. tenses, declensions, cases, and genders. It is unlikely that such a strategy would permit accurate
translation.

DTS has chosen to use the intermediate model. It defines common DTS Object name keys like Common.Concept,
Common.Property, etc., but does not abstract out actions/verbs.

DTS 4: Internationalizing DTS

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 10

Application Layout

In addition to string substitution, an internationalized Module must adapt to other language-specific issues such as the
direction of text flow (panel layout) and data formats. Internally, the Locale object provides the JVM with locale-
sensitive direction. Some of these dependencies, such as Calendar formats, are generally available without programmer
intervention. For other capabilities, the application developer must take explicit steps.

A thorough description of all aspects of application internationalization is beyond the scope of this document. As one
example of the principles, consider the BorderLayout class commonly used in JPanel construction. BorderLayout
supports two types of positioning constants, absolute and relative. Absolute positioning constants are NORTH, SOUTH,
WEST, and EAST. These constants refer to the top, bottom, left and right BorderLayout regions. To accommodate
language-specific layout, on the other hand, BorderLayout supports the relative positioning constants, PAGE_START,
PAGE_END, LINE_START, and LINE_END. In a container whose ComponentOrientation is set to
ComponentOrientation.LEFT_TO_RIGHT, these constants map to NORTH, SOUTH, WEST, and EAST, respectively. If
ComponentOrientation is set to ComponentOrientation.RIGHT_TO_LEFT, on the other hand, these constants
map to NORTH, SOUTH, EAST, and WEST. ComponentOrientation is usually set automatically by the current JVM
Locale, but can be modified programmatically to address specific layout requirements. Other Layout Managers such as
GridBagLayout have similar options.

 See the Internationalization Trail in the Java Tutorials for a complete discussion of internationalization in Java.

