

DTS 4: Editor Module
Guide

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 2

Table of Contents

A. Introduction ... 4

B. Framework Overview.. 5

C. Editor Configuration ... 6

D. DTS Editor Layouts... 7

D.1 Layout XML File – Layout Tag ..7

D.2 MenuBar Tag ..8

D.3 ToolBar Tag ...8

D.4 PanelLayout Tag ...9

D.5 Panel Tag ...9

D.6 TabPanel Tag .. 10

D.7 MultiPanel Tag ... 10

E. Layout Editor... 13

E.1 Editor Overview .. 13

E.2 The Options Tab .. 14

E.3 The Menu Bar Tab ... 15

E.4 The Tool Bar Tab .. 17

E.5 The Layout Tab ... 19

E.5.1 The Panel Element .. 20

E.5.2 The TabPanel Element .. 22

E.5.3 The MultiPanel Element ... 24

E.6 Layout Editor Menus.. 25

F. Module Events ... 27

F.1 IIDs .. 27

F.2 Event Types .. 27

F.3 Event Processing .. 28

F.4 Programmatic Setting of IIDs .. 29

G. Internationalization ... 31

H. Example Module .. 32

H.1 Module Registration .. 32

H.2 Imports ... 33

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 3

H.3 Class Declaration .. 34

H.4 Initializing the Module ... 35

H.5 Getting Module Menu and Toolbar Items .. 37

H.6 Getting Plug-in Menus, Menu Items and Toolbar Items 39

H.6.1 Setting Plug-in Components ... 40

H.7 Handling Connection Events .. 41

H.8 Initialization Summary... 41

H.9 Creating a Panel for the Module.. 41

H.10 DTSMonitor Functionality ... 42

H.10.1 Connection Event Functionality.. 45

H.10.2 Module Event Functionality.. 46

H.10.3 Data Change Event Functionality ... 47

H.11 Drop Functionality... 49

H.12 Showing Drop Details .. 50

H.13 Error Handling .. 51

H.14 Configuration Management .. 52

I. Converting Plug-in Modules ... 54

I.1 Converting a Pre-V4 Plug-in .. 54

I.2 Converting to V4.3 ... 54

J. Appendix A – DTS Editor Modules .. 55

K. Appendix B – Standard DTS Editor Layout File....................................... 60

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 4

A. Introduction

The DTS Editor Plug-in Framework was introduced in DTS Version 3.4 to provide a

mechanism for extending the capabilities of the DTS Editor. Using the Plug-in Framework,

developers were able to create new plug-in modules designed to interface and work with

existing DTS Editor features. This enabled the DTS developer to create targeted, custom

functionality without having to spend time and effort developing a GUI architecture and re-

creating standard DTS Editor features such as connection handling and drag-and-drop (DnD).

With DTS Version 4, the Plug-in Framework has been extended to a DTS Editor Module

Framework that provides additional capabilities and permits complete customization of the DTS

Editor layout. In essence, the DTS Editor is no longer an extensible application, but a

customizable platform for the delivery of DTS user functionality. The “classic” DTS Editor is

still available as one example of an Editor implementation.

The DTS Editor Module Framework is backwards-compatible with the Plug-in Framework: pre-

V4 Editor plug-ins run unmodified in the default DTS Editor configuration, and can be easily

“upgraded” to full Module status with the addition of few new methods in their base class.

This Guide provides a comprehensive explanation of the DTS Editor Module Framework,

including a description of DTS Editor Layouts and the interactive Layout Editor. An example of

custom Module development is given and the catalog of available standard DTS Modules is

provided. The Guide is written for developers and architects who would like to implement

custom functionality in their DTS environments. A basic understanding of Java programming is

assumed.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 5

B. Framework Overview

In the DTS Editor Module Framework, functionality is delivered via discrete components called

Modules. Modules encapsulate a set of features (menu items, toolbar items, GUI panels and

executable classes) that perform related tasks. Examples of Modules from the classic DTS Editor

implementation are the Search Panel and the Property Editor Panel. Using aspects of the Module

Architecture such as the DTS Editor Configuration File and DTS Editor Layout File (described

in succeeding sections), Modules can be selected, functionality tailored, and GUIs designed to

meet specific user requirements. Appendix A – DTS Editor Modules is a catalog of all standard

DTS Editor Modules annotated with details on Module menu and toolbar items, event

processing, DnD support, and configuration options.

One of the strengths of the Module Architecture is its ability to support the creation and

integration of custom, user-developed, DTS Editor Modules. Thus the default Editor structure

can be augmented, or even replaced, with unique features and functions. A new DTS Editor

Module (or plug-in) is created by writing a base Module class that extends the

DTSEditorModule class and placing this class (and any related Module classes) into a “jar”

package. On DTS Editor start-up, designated folders are scanned for these Module packages and

identified Modules are registered for potential use. Once registered, the Module can be used as

part of an Editor layout (see DTS Editor Layouts below) or “plugged-in” to the default layout.

When the Editor determines that a Module is to be used, it invokes specific methods (defined in

the DTSEditorModule class) to initialize the module, create custom menu and toolbar items,

etc. The DTSEditorModule class (and its associated DTSEditorModuleMgr class)

provide methods for defining Modules, exposing functionality (like displaying panels) and

accessing DTS Editor services including drag and drop support for DTS data objects such as

Concepts, Properties, Terms, etc., connection and event detection, and error (exception)

processing. Further details on Module Framework support classes are provided in the Example

Module section below.

The following sections provide details on specific aspects of the Module Architecture and an

example of Module development.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 6

C. Editor Configuration

When the DTS Editor is invoked, it reads a configuration (Java Properties) file that defines

local Editor attributes such as default connection parameters and preferred behaviors, such as

whether clicking on a Namespace or Concept in the Tree Panel automatically loads the Details

Panel with the Concept (a.k.a., “Click to Edit”).

Since most Editor behaviors are set by user selections in the various panels, it is unlikely that you

will need to manually modify configuration values, but there are two configuration parameters

that should be understood:

Key Value

autoConn
If “true”, the DTS Editor performs an automatic Connect action

when opening. Default value is “false”. This parameter can be

also set by the Connect Parameters panel.

title
If non-empty, the string placed in the Title Bar of the

application. This value overrides the normal value of the

DTSEditor.Title resource file entry (see the

Internationalization section below for further information on

the internationalization resource file). The default value for
title is “”.

The default configuration file for the DTS Editor is:

bin\editor\dtseditor.xml

in the DTS installation directory. A different configuration file can be specified, however, by
providing another argument to the runApp command in the invoking command line. Thus:

C:\Program Files\Apelon\DTS 4.3\bin\runApp.bat

com.apelon.apps.dts.editor.DTSEditorApp –config:MyConfig.xml

will start the Editor using the MyConfig.xml file (in the bin\editor folder). It is unlikely

that a different configuration file will be needed, but if it is, the custom file should be created by

first opening the default file and then saving the file under a different name.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 7

D. DTS Editor Layouts

The visual structure of the DTS Editor application, i.e., the items in the Menu Bar, the icons in

the Tool Bar and the panels visible in the main Editor window, is called the Editor’s Layout.

Prior to DTS Version 4.3, Layout definitions were stored in XML files on the client and linked

from the DTS Editor configuration file. Since 4.3, Layout definitions are maintained on the DTS

server and users can interactively select desired Layouts, and design their own Layouts using a

GUI-based designer, all directly from the DTS Editor. Management of Layouts is similar to that

of Namespace and Subset Profiles (see the DTS Editor Users Guide for information on

Profiles). Layout definitions can also be exchanged via Layout XML files, compatible with those

used prior to DTS 4.3.

The remainder of this section describes the elements of a Layout definition using the XML

exchange file format. The following section will explain how to design and maintain Layout

definitions interactively using the Layout Editor GUI.

D.1 Layout XML File – Layout Tag

A Layout XML file specifies the contents and structure of a DTS Editor instance: its menu bar,

tool bar and panels. Elements in the Layout also control whether plug-in Modules are allowed

and how Modules interact. Layout files can be created using a text or xml editor, or can be

written from an existing Layout using the Export option in the Layout Editor.

The format of the Layout file is defined by dtslayout.xsd which can be found in the

bin\editor folder of the DTS installation directory. The default DTS Editor Layout file,

dtslayout.xml, is shown in Appendix B – Standard DTS Editor Layout File. Note that the

provided dtslayout.xml is for descriptive purposes only; it is not used by the DTS Editor. A

read-only, internal representation of the default Layout is kept. The file can be imported into the

Layout Editor, however, to “seed” new Layouts.

The top level element of a Layout is the Layout tag. This tag wraps the rest of the Layout

elements and can contain four attributes. Here is an example of the Layout tag from the default

Layout:

<Layout Description=" Apelon Standard Layout" EnablePlugins="true" >

The first attribute is Description. This optional attribute is a text description of the Layout.

The next attribute is the optional EnablePlugins attribute. When the value of this attribute is

“true”, any registered Modules that are not explicitly named in the Layout are considered plug-

ins and are automatically added to the Layout at layout build-time according to the values

returned by the plug-in methods from the base Module class. If this attribute is absent, or its

value is “false”, only those Modules explicitly identified in the Layout will be made a part of the

application. This attribute is set to “true” in the default DTS Editor Layout for backwards

compatibility, but when a custom Layout has been defined, it is usually appropriate to not

include the EnablePlugins attribute so that the Layout components can be completely

specified.

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 8

Two other optional attributes are available for the Layout tag: Width and Height. These

elements declare the width and height (in pixels) of the Editor frame. If the width and height are

not explicitly provided, the frame is built using a default width of 1024 and default height of 768

respectively. In either case, the realized width and height are subject to available screen size.

The three element tags under the Layout tag are MenuBar, ToolBar and PanelLayout.

D.2 MenuBar Tag

The MenuBar tag specifies the contents of the application’s menu bar. As seen in the fragment

below:

a MenuBar is made up of a sequence of Menu tags, each corresponding to a Java JMenu.

Attributes in the Menu tag specify the internal action command (Command), menu mnemonic

(Mnemonic) and visible menu name (Name). Within each Menu tag is a list of SelectItem

elements corresponding to the specific selectable items in the menu. In addition to SelectItem,

the Separator element is available to draw an item separator in the menu.

The only required attribute in the SelectItem tag is the name of the Module invoked when the

item is selected. The SelectItem tag does support two other, optional, attributes, Options and

Tip. The Options attribute value is a formatted string that will be passed to invoked Modules

to modify Module layout and/or behavior. Options is described in more detail in the Panel Tag

section below. The value of the Tip attribute is a ToolTip text string that can be associated with

the item. The value overrides any default ToolTip provided by the Module.

A Module can expose multiple menu items when it is loaded (see Appendix A – DTS Editor

Modules for examples). Note that the display name of the menu item(s) is accessed at build-time

from the Module’s base class.

D.3 ToolBar Tag

The ToolBar element has similar functionality for creation of the application’s toolbar. Using

the example below:

<MenuBar>

<Menu Command="file" Mnemonic="f" Name="File">

<SelectItem ModuleName="DTSConnect"/>

<Separator/>

<SelectItem ModuleName="DTSExit"/>

</Menu>

…

</MenuBar>

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 9

the ToolBar tag defines the set of Modules that are shown (via icons accessed from the

Module’s base class) in the toolbar. The ModuleName attribute is required in each SelectItem

tag, while the Options and Tip attributes are optional. As with the Menu tag, multiple icons

can be exposed by the Module and the Separator element is available.

D.4 PanelLayout Tag

The most interesting portion of the Layout definition is the PanelLayout tag. PanelLayout

implements a very flexible “language” for describing the structure of Module panels in the main

window. A PanelLayout element contains one of the following elements:

• Panel – a single Module panel

• TabPanel – a tabbed panel, i.e., Java JTabbedPane, consisting of multiple panels,

selectable by clicking on a tab label

• MultiPanel – a compound panel consisting of a set of panels organized sequentially

either horizontally or vertically

D.5 Panel Tag

The Panel element typically consists of simply the name of its associated Module:

<Panel ModuleName="DTSStatus"/>

The Panel tag also supports the optional Options, IID and TargetIID attributes. The IID

and TargetIID attributes are described later in the Module Events section of this document.

The Options attribute is a formatted string that can be passed to Modules to modify Module

layout and/or behavior. The format of the Options string is a semicolon-delimited list of

key/value string pairs separated by a colon. The value string (and its colon delimiter) are

optional. Spaces are ignored and quotation marks are not permitted in the attribute value. Here is

an example of an Options attribute:

<Panel ModuleName="MyModule" Options="size:big;color:red;full" >

When a Module is instantiated from the Layout, the Options element is parsed by the Module

Loader and converted to a Java HashMap before passing to the Module as described in

Programmatic Setting of IIDs. Both keys and values are converted to lowercase. The Options

parameter (with associated map) is currently only supported by the DTSDetail Module (see

<ToolBar>

<SelectItem ModuleName="DTSConnect"/>

<Separator/>

<SelectItem ModuleName="DTSTree"/>

<SelectItem ModuleName="DTSSearch"/>

…

<Toolbar>

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 10

Appendix A – DTS Editor Modules), but is available for use by user-developed Modules and

Plug-ins.

D.6 TabPanel Tag

The TabPanel element consists of an optional Placement attribute, and a sequence of Tab

elements, each element specifying the panel contents of the associated tab. The Tab element can

contain an optional Label attribute which provides an explicit value for the tab’s label.

The Placement attribute specifies where the panel’s tabs are to be placed. A value of “T”, or

“t” species the top of the panel, “B” or “b” specifies the bottom, “R” or “r” specifies the

right side, and “L” or “l” specifies the left side. The default is “T”.

The Label attribute is usually not necessary when the tab content is a Panel. When it is

missing, the value returned by the getComponentShortName() method from the Module’s

base class is used as the tab’s label string.

The content of a Tab is the same as the content of the PanelLayout element: a Panel,

TabPanel or MultiPanel:

See the individual Panel, TabPanel and MultiPanel sections for details on these elements.

D.7 MultiPanel Tag

The MultiPanel element builds a horizontal or vertical sequence of panels, each constituent

panel sharing the available space of the combined panel. The power of the MultiPanel is that

the constituent panels can themselves be compound panels. Like the TabPanel element, the

panel elements in a MultiPanel can be a Panel, a TabPanel, or another MultiPanel. A

Divider element is also available to specify that a movable divider be placed between two

adjacent panels. Here is a simplification of the familiar default DTS Editor Layout:

<TabPanel Placement="t" >

<Tab >

<Panel ModuleName="DTSTree" TargetIID="detail" />

</Tab>

<Tab >

<Panel ModuleName="DTSWalker" TargetIID="detail" />

</Tab>

<Tab >

<Panel ModuleName="DTSSearch" TargetIID="detail" />

</Tab>

<Tab >

</TabPanel>

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 11

The top level layout element is a vertical (attribute Type=”V”) MultiPanel consisting of

another MultiPanel and the DTSStatus Module Panel. The inner, horizontal, MultiPanel

consists of a TabPanel containing the DTSTree, DTSWalker and DTSSearch Module

panels, a movable Divider, and a second TabPanel containing the DTSDetail Module panel.

The continuousLayout attribute on the initial PanelLayout tag is an optional attribute that

specifies whether panels are continuously repainted when any MultiPanel Dividers are

being moved. The default is “true”.

A Weight attribute is also available for the MultiPanel, TabPanel and Panel tags. Weight

provides “guidance” to the Layout builder as to how to apportion panel space among constituent

panels. The value of Weight for a panel is a decimal number that is compared to the sum of the

other Weight values in the encompassing panel to determine the proportion of space allocated to

the panel. For example, in the MultiPanel below:

the first Panel is allocated one third (.3/.9) of the space. Constituent panels not having a weight

are given space according to their preferred sizes. While the Layout builder tries to honor weight

requests and specified preferred, minimum and maximum sizes, any such request is always

subject to constraints placed on the Layout from other Layout elements. Thus in the first

(vertical) MultiPanel of the default DTS Editor Layout, all extra space is allocated to the upper

panel because the DTSStatus Module panel asserts a single line maximum height. Finally, note

the Layout Editor does not consider weight values in its display algorithm.

<PanelLayout continuousLayout="true">

<MultiPanel Type="V">

<MultiPanel Type="H">

<TabPanel>

<Tab Name="tree" ModuleName="DTSTree"/>

<Tab Name="walker" ModuleName="DTSWalker"/>

<Tab Name="search" ModuleName="DTSSearch"/>

</TabPanel>

<Divider/>

<TabPanel>

<Tab Name=”detail” ModuleName="DTSDetail"/>

</TabPanel>

</MultiPanel>

<Panel ModuleName="DTSStatus"/>

</MultiPanel>

</PanelLayout>

<MultiPanel Type="H">

<Panel ModuleName="FirstPanel” Weight=”.3"/>

<Panel ModuleName="SecondPanel” Weight=”.6"/>

</MultiPanel>

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 12

The actual layout directions used by the MultiPanel layout manager (top-to-bottom/bottom-to-

top, left-to-right/right-to-left) is determined by Locale settings. See the Internationalization

section below for details.

Panel attributes can also include the IID and TargetIID Instance Identifier (IID) attributes

used to facilitate inter-Module communication. IIDs are described in the Module Events section

below.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 13

E. Layout Editor

The Layout Editor is a GUI panel for creating and maintaining DTS Editor Layouts. The Editor

supports all of the Layout elements described in the preceding section. In the standard DTS

Editor Layout, the panel as accessed via the Layout Editor item in the Options menu.

E.1 Editor Overview

Upon opening, the Layout Editor appears as below:

The Editor Menu bar holds the File and Configure menus. These menus will be described at

the end of this section.

The main panel consists of an upper Select Layout area with a Layout combo and a New

button, a middle definition area with four tabs which display the specifications of the Layout,

and a lower area containing six buttons for performing Layout Editor actions.

DTS supports both User and System Layouts. User Layouts, shown with a “(U)” following the

Layout name, are available only to the current user; users can see their own User Layouts, but

not those of other users. System Layouts, shown with an “ (S) ” after the name, are available to

(can be read by) all users but only users having the DTS Administrator privilege can create or

edit System Layouts.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 14

To load an existing Layout into the Editor, select the Layout from the dropdown in the upper

selection area. The middle definition area will be loaded with the definition of the Layout. The

screen shot above shows the System Default DTS Layout. This Layout is always available for

selection, although in read-only form (all fields are disabled). See the description of the Copy

button below for instructions on how to create a writable version for modification.

To create a new Layout, click the New button in the selection area, and enter the Layout’s name

in the dialog. The definition area will be loaded with an empty User Layout.

The six buttons at the bottom of the Editor panel perform actions on the selected Layout. Some

buttons are only enabled when the Layout is writable, or has been modified.

• The Copy button copies the selected Layout to a new Layout with a different name. Any

Layout, including a read-only Layout, can be copied. Non-Administrator users can copy

System Layouts, but only to a new User Layout. This can provide “starting points” for

Layout customization. If the user is a DTS Administrator, a User Layout can be copied to

a new System Layout. This is called Layout promotion.

• Delete deletes the selected Layout. System Layouts can only be deleted by DTS

Administrator users.

• Rename renames the current Layout.

• Save stores any modifications to the selected Layout.

• Restore discards current modifications to the Layout and loads the original Layout

definition.

• Cancel closes the Layout Editor. If any modifications are pending, a confirmation dialog

is shown.

The following sections describe the four tab panels that make up the definition area. These

panels provide for viewing and updating of Layout specifications.

Note: The descriptions that follow assume that the selected Layout is writable. If the selected

Layout is read-only, i.e. the Default DTS Layout (S) or another System Layout when the

user does not have the DTS Administrator privilege, all element context menus will consist of a

single View item which will open the associated parameter dialog in read-only mode (all fields

will be edit-disabled).

E.2 The Options Tab

The Options tab (see screen shot above) shows the attributes associated with the Layout

element. There is a text description of the Layout (the Description attribute), a checkbox for

setting whether automatic loading of user plugins at build time should be performed (the

EnablePlugins attribute), and fields for the optional Width and Height attributes. As

described in the previous section, plugins are enabled for the default layout, but custom layouts

will usually leave this box unchecked. The default width and height are shown in the fields. You

can override the defaults by entering the desired integer value.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 15

At the bottom of this, and the other tab panels, are two action buttons: Clear and Restore.

• Clear clears the contents of the tab panel, restoring the field defaults, if any.

• Restore, which is only enabled once modifications to the panel have been made,

discards any modifications and restores the elements’ previously saved values.

E.3 The Menu Bar Tab

The Menu Bar tab shows the menus (Menu elements) and associated menu items (SelectItem

elements) for the Layout:

The menu bar menu and menu item entries are visualized in a tree format in the left portion of

the tab panel. The right portion of the tab panel is the Module List panel. This latter panel lists

all the Modules, and Module components, that can be used in menus. Note that some Modules,

like the DTSStatus Module, are not present in the list because they do not have an associated

menu item. As of DTS Version 4.3, new methods have been added to the Module API to support

passing feature availability information to Layout Editors. See the Example Module section

below for further information.

Menus are displayed as top level nodes with menu items as subordinate nodes. To see the menu

items below any menu, just expand the menu node. (In the screen shot above, the Options

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 16

menu has been expanded). Menu items are displayed with their menu item name followed by

their Module Name.

To add a new menu to the Menu Bar, click on the Add Menu button and enter the menu name in

the resulting dialog. If a menu or menu item is selected, the menu is added before the selected

menu. If there is no selection, the menu is added as the last menu.

To add a menu item to a menu, drag a Module, or Module component, entry from the Module List

panel to the menu tree. Tree nodes will be highlighted as the Module moves over the tree. .

Entries dropped on a menu item will insert a menu item at the drop location. If the drop location
is a menu node, the entry is inserted as the last menu item in the menu. The Separator pseudo-

Module is available in the Module List panel to place a separator item in the menu. Remember

that some Modules will expose multiple menu items when the menu is realized. Module

components, on the other hand, will expose only one menu item.

Menu items, and whole menus, can be moved within the Menu Bar panel using drag and drop.

Available drop locations (tree nodes) are highlighted as an item is dragged over the tree. Menu

items can be dropped on any node. An item dropped on another menu item inserts the item at the

drop location. If the drop location is a menu node, the item is inserted as the last item in the

menu. Menus can only be dropped on other menu positions. The dropped menu, with all of its

subordinate items, is inserted as a new menu at the location. Note that internal drops are always

inserts; they do not replace the previous entry.

The normal internal drop mode is MOVE: after the drop, the moved item is removed from its

original location. If the Ctrl key is pressed during the drag, on the other hand, the drop mode is

COPY: the menu or menu item remains in its original location.

Selecting a menu or menu item enables the Edit and Remove buttons at the bottom of the tab

panel. These same options are available via a right-click context menu on the entry.

Pressing the Edit button (or selecting the Edit context item) for a menu node opens the Menu

Parameters dialog:

This dialog displays the Menu attributes:

• Name is the name of the menu.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 17

• Mnemonic is the optional one character mnemonic for the menu.

• Command is an optional string value that is set as the command attribute on the menu

item. The command string is only used by Java programs and is not required.

Click the Save button to save any modifications, Restore to discard modifications and return

to the original parameter values, and Cancel to exit the dialog.

Pressing the Remove button (or selecting the Remove context item) for a menu node opens a

confirmation dialog to remove this menu and all of its associated items from the menu bar.

Pressing the Edit button or (or selecting the Edit context item) for a menu item node opens the

SelectItem Parameters dialog:

This dialog displays the SelectItem attributes associated with a menu item:

• Name is the name (Name attribute) of the menu item. This value defaults to the Module

component’s short name, as specified in the Module class file, but it can be overridden by

typing an alternate value into the field.

• Tool Tip is the tool tip string (Tip attribute) displayed when the mouse hovers over the

item. Any entered value overrides the value from the Module class file.

• Options is an optional parameter string that is passed to the Module when it is invoked.

This field is only enabled if the associated Module class file has designated that the

Module accepts an option string. See the Panel Tag section above for further information.

Pressing the Remove button (or selecting the Remove context item) for a menu item node opens

a confirmation dialog to remove this menu item from its parent menu.

E.4 The Tool Bar Tab

The Tool Bar tab shows the tool bar items (SelectItem elements) for the Layout:

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 18

Tool bar entries are visualized in a list format. Entries are displayed with their Short Name and

Module Name. Again, note that only Modules that expose tool bar icons are present in the

Module List panel.

To add an item to the tool bar, drag a Module, or Module component, entry from the Module

List panel to the list panel. Tool bar nodes will be highlighted as the Module moves over the

list. A drop inserts a new tool item at the drop location. The Separator pseudo-Module is

available in the Module List panel to place a separator item in the tool bar. Remember that

some Modules will expose multiple tool bar items when the menu is realized. Module

components, on the other hand, will expose only one tool bar item.

Like the Menu Bar panel, tool bar items can be moved within the Tool Bar panel using drag and

drop. Dropped entries are always inserted and use a MOVE drop mode unless the Ctrl key is

pressed.

Selecting a tool bar item enables the Edit and Remove buttons at the bottom of the tab panel.

These same options are available via a right-click context menu on the tool bar entry.

Pressing the Edit button or (or selecting the Edit context item) for a tool bar entry opens the

SelectItem Parameters dialog. This dialog is the same as that of the menu item dialog

described above; it contains the Name, Tool Tip and Options fields.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 19

Pressing the Remove button (or selecting the Remove context item) for a tool bar node opens a

confirmation dialog to remove this item from the tool bar.

E.5 The Layout Tab

The Layout Tab displays the PanelLayout element. This panel contains the Continuous

Layout checkbox, the “drawing panel” for the Layout and another Module List panel. Here is

the Layout tab for the default DTS Editor Layout:

The checkbox is normally selected so that the Layout will be continuously redrawn when panel

dividers are moved. As with the Menu Bar and Tool Bar panels, the Module List panel only

contains Modules, or Module components, that allow placement in the Layout. The TabPanel,

Horizontal MultiPanel, Vertical MultiPanel and Divider pseudo-Modules are also

available. The effects of entries will be described later.

As described in the DTS Editor Layouts section above, a Layout consists of one of the following

elements:

• Panel – a single Module panel

• TabPanel – a tabbed panel, i.e., Java JTabbedPane, consisting of multiple panels,

selectable by clicking on a tab label

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 20

• MultiPanel – a compound panel consisting of a set of panels organized sequentially

either horizontally or vertically

The following sections describe these three elements and their associated operations.

E.5.1 The Panel Element

A Panel element can exist as the lone element in a Layout or as a component of a TabPanel or

MultiPanel. The Layout panel for a new Layout is a single, empty, Panel, as shown below:

To associate a Module with an empty Panel, or change the Module currently associated with a

Panel, drag a Module entry from the Module List panel and drop it on the Panel area. (The

TabPanel, Horizontal MultiPanel, Vertical MultiPanel and Divider pseudo-

Modules cannot be dropped in a Panel element.) The name of the Module will be displayed in

the middle of the Panel area (see the Default DTS Layout example at the beginning of this

section).

A number of Panel actions are available from the Panel’s right-click context menu. To open

the menu, right-click anywhere in the panel. (The context menu is not available for an empty

Panel.) As described below, some of these actions may not be present in all Panel contexts.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 21

• Edit – opens the Panel Parameters dialog. See details below.

• Remove – opens a confirmation dialog to remove the Panel from its parent element.

• Wrap with Tab Panel – replaces this Panel element with a TabPanel element and

adds the original Panel to the TabPanel.

• Wrap With Horizontal MultiPanel – replaces this Panel element with a

horizontally-oriented MultiPanel element and adds the original Panel to the

MultiPanel.

• Wrap with Vertical MultiPanel – replaces this Panel element with a vertically-

oriented MultiPanel element and adds the original Panel to the MultiPanel.

• Unwrap TabPanel – replaces this Panel’s parent TabPanel element with the Panel.

This action is only present if the Panel is the only element in the parent TabPanel.

• Unwrap MultiPanel – replaces this Panel’s parent MultiPanel element with the

Panel. This action is only present if the Panel is the only element in the parent
MultiPanel.

Selecting the Edit item in the Panel’s context menu opens the Panel Parameters dialog:

This dialog shows parameters common to all deployed Modules or Module components:

• IID is an optional Instance Identifier for this Panel. Use of this element is described

later in the Module Events section of this document.

• Target IID is an optional Target Instance Identifier for the Panel. Use of this element

is described later in the Module Events section of this document.

• Options is an optional parameter string passed to the Module or Module component

when it is realized. This field is only enabled if the associated Module class file has

designated that the Module accepts an option string. This string is described in the Panel

Tag section above.

• Weight is a numeric parameter only enabled when the Panel is part of a MultiPanel.

The Weight parameter is discussed in the MultiPanel Tag section above.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 22

E.5.2 The TabPanel Element

A TabPanel element can exist as the lone element in a Layout or as a component of another

TabPanel or a MultiPanel. The screen shot at the top of this section shows two TabPanels

in the default DTS Editor Layout.

A TabPanel is displayed in normal tab panel style with a row of tabs at the top. To see the panel

associated with any tab, just click on the desired tab in the tab area. The contents of a tab can be

a Panel, another TabPanel or a MultiPanel.

TabPanels can be created in two ways:

1. By dropping the TabPanel pseudo-Module from the Module List panel into a

TabPanel or MultiPanel, or

2. By selecting the Wrap with TabPanel context menu item from a Panel, TabPanel

or MultiPanel.

To add a Module Panel to an existing TabPanel, drag a Module or Module component from

the Module List panel into the tab area of the TabPanel. If the drop position is over an

existing tab, a new tab will be inserted at that position and the remaining tabs moved to the right.

The new tab will contain a Panel holding the Module. If the drop position is in the “open” area

past the last tab, the new tab will be added at end of the tab list. The label for the new tab will be

the short name of the Module or Module component as given in the class file. This label can be

changed by editing the Label field in the tab’s edit dialog (see below).

TabPanels and MultiPanels can be added to the TabPanel in a similar manner by dropping

these pseudo-Modules from the Module List panel. The default label of the new tab will be

Tabn where n is the number of the tab position.

Tab can be reordered within the TabPanel using drag and drop. Drag any tab to another tab

position, including the “open” position at the end of the tab area. When dropped, the tab will be

moved to (inserted at) that position. Tab COPY is not available.

TabPanels have two context menus, both available by right-clicking in the tab area. If the click

is on an existing tab, the context menu contains the Edit and Remove items.

Selecting Edit opens the Tab Parameter dialog:

This dialog shows the attribute associated with the Tab element:

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 23

• Label specifies the label on the tab. The value defaults to the Module component’s short

name for Module Panels, or Tabn for TabPanels and MultiPanels, but the default

can be overridden by entering an alternate value into the field.

Selecting Remove from the tab context menu opens a confirmation dialog to remove the tab, and

its contents, from the TabPanel.

A right click on the right-most (open) part of the tab area opens the TabPanel’s context menu.

As described below, some of these actions may not be present in all TabPanel contexts.

• Edit – opens the TabPanel Parameters dialog. See details below.

• Remove – opens a confirmation dialog to remove the TabPanel from its parent element.

• Wrap with Tab Panel – replaces this TabPanel element with a new TabPanel

element and adds the original TabPanel to the TabPanel.

• Wrap With Horizontal MultiPanel – replaces this TabPanel element with a

horizontally-oriented MultiPanel element and adds the TabPanel to the

MultiPanel.

• Wrap with Vertical MultiPanel – replaces this TabPanel element with a

vertically-oriented MultiPanel element and adds the TabPanel to the MultiPanel.

• Unwrap TabPanel – replaces this TabPanel’s parent TabPanel element with the

TabPanel. This action is only present if the TabPanel is the only element in the parent

TabPanel.

• Unwrap MultiPanel – replaces this TabPanel’s parent MultiPanel element with the

TabPanel. This action is only present if the TabPanel is the only element in the parent
MultiPanel.

Selecting the Edit item in the TabPanel’s context menu opens the TabPanel Parameters

dialog:

This dialog displays the TabPanel attributes:

• Placement specifies the location of the tabs in the TabPanel’s JTabbedPane. You

can select Top, Right, Bottom, or Left from dropdown. The default is the top of the

pane. The Layout Editor display reflects this selection.

• Weight is a numeric parameter only enabled when the Panel is part of a MultiPanel.

The Weight parameter is discussed in the MultiPanel Tag section above.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 24

E.5.3 The MultiPanel Element

A MultiPanel element can exist as the lone element in a Layout or as a component of a

TabPanel or another MultiPanel. The screen shot at the beginning of this section shows two

MultiPanels in the default DTS Editor Layout.

A MultiPanel is displayed as a horizontal or vertical sequence of constituent panels with each

panel surrounded by a colored bar to the left and right (if a horizontal MultiPanel) or above

and below (if a vertical MultiPanel). The colored bars are called Expanders. Expanders are not

part of the realized MultiPanel, but are used by the Layout Editor to delimit the MultiPanel

and act as droppable areas for new Modules (see below). When nesting MultiPanels, the

panels use different colored Expanders to help distinguish each panel. The constituent panels of a

MultiPanel can be any mix of Panels, TabPanels and MultiPanels.

MultiPanels can be created in two ways:

1. By dropping the Horizontal MultiPanel or Vertical MultiPanel pseudo-

Module from the Module List panel into a TabPanel or MultiPanel, or

2. By selecting the Wrap with Horizontal MultiPanel or Wrap with Vertical

MultiPanel context menu item from a Panel, TabPanel or MultiPanel.

To add a Module Panel to a MultiPanel, drag a Module or Module component from the

Module List panel onto one of the MultiPanel’s Expanders. The Expander will be replaced

with a Panel containing the Module, and two new Expanders.

TabPanels and MultiPanels can be added to the MultiPanel in a similar manner by

dropping these pseudo-Modules from the Module List panel.

The Divider pseudo-Module in the Module List panel represents a movable border element

that can be placed between any two Panels in a MultiPanel. When the Layout is realized, the

Divider can be moved with the mouse to apportion the sizes of the adjacent Panels. To add a

Divider to the MultiPanel, drop a Divider onto any Expander. Note that a Divider cannot

be added at the beginning (above/left) or end (below/right) location in a MultiPanel. This

condition will also be checked when the Layout is saved. A Divider has a single context menu

item: Remove. Select this item to remove the Divider from the MultiPanel.

The MultiPanel’s context menu is available by right clicking on any of the panel’s

Expanders. As described below, some of these actions may not be present in all MultiPanel

contexts.

• Edit – opens the MultiPanel Parameters dialog. See details below.

• Remove – opens a confirmation dialog to remove the MultiPanel from its parent

element.

• Wrap with Tab Panel – replaces this MultiPanel element with a new TabPanel

element and adds the MultiPanel to the TabPanel.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 25

• Wrap With Horizontal MultiPanel – replaces this MultiPanel element with a

new horizontally-oriented MultiPanel element and adds the original MultiPanel to

the new MultiPanel.

• Wrap with Vertical MultiPanel – replaces this MultiPanel element with a new

vertically-oriented MultiPanel element and adds the original MultiPanel to the new

MultiPanel.

• Unwrap TabPanel – replaces this MultiPanel’s parent TabPanel element with the

MultiPanel. This action is only present if the MultiPanel is the only element in the

parent TabPanel.

• Unwrap MultiPanel – replaces this MultiPanel’s parent MultiPanel element with

the MultiPanel. This action is only present if the MultiPanel is the only element in

the parent MultiPanel.

Selecting the Edit item in the MultiPanel’s context menu opens the MultiPanel

Parameters dialog:

This dialog displays the MultiPanel attributes:

• Type specifies the orientation of the MultiPanel. You can select Vertical or

Horizontal from the dropdown. The Layout Editor display reflects this selection.

• Weight is a numeric parameter only enabled when the Panel is part of a MultiPanel.

The Weight parameter is discussed in the MultiPanel Tag section above.

E.6 Layout Editor Menus

The Layout Editor has two menus: File and Configure.

The File menu contains two items: Import and Export. These items convert between the

internal DTS Layout formats and external, XML-based file formats as described in the DTS

Editor Layouts section above. Layout files can be imported from, or exported to, the local client

file system. These actions are most commonly used for the exchange of Layouts between users

or between a user and a DTS Administrator for the purposes of promoting a User Layout to

System status.

The Configure menu has only one item: Set Default Layout. Selecting the item opens the

Set Default Layout dialog:

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 26

Layout defaults control what Layout is shown when a user first connects to a DTS server in a

session. After connecting the first time, DTS looks for the user’s default Layout. If one exists,

this Layout is loaded. If the user has not designated a default Layout, DTS looks next for the

default system Layout. (The default system Layout must be a System Layout). This Layout is set

by a DTS Administrator and permits a common Layout to be loaded for all users. Finally, if a

default system Layout has not been specified, DTS loads the standard, classic, Layout. As

discussed earlier, this layout is maintained internally by DTS and cannot be modified.

To set a default user layout, select the desired Layout from the dropdown and click on the Set

button. The selected Layout will be shown in the Default Layout line. To remove any

default Layout, click on the Clear button.

The System tab in this dialog is used to set the default system Layout and is only available to

DTS Administrators.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 27

F. Module Events

In addition to standard DTS events such as connection events

(com.apelon.beans.dts.plugin.connection.*) or knowledgebase events (subclasses

of com.apelon.dts.client.events.DataChangeEvent), the DTS Editor Module

Framework implements its own event class:

DTSEditorModuleEvent(String sourceIID, String targetIID,

DTSEditorModuleEventType type, Object value)

The following sections provide further information on DTSEditorModuleEvents.

F.1 IIDs

Unlike standard Java events, the event source (initiating Module instance) and event target

(destination Module instance) are denoted by Module Instance Identifier strings, or IIDs. IIDs

are needed, rather than Module names, since it is common to have multiple “instances” of a

Module (such as a popup, or floating, Concept/Term Detail panel in addition to the panel in

the right tab pane), and a unique identifier is needed to refer to a specific Module instance.

IIDs are created by the DTS Editor whenever a Module must be instantiated, either during

initialization as directed by the supplied Layout, or via a programmatic call. Editor-created IIDs

are always unique integer Strings.

In addition to a Module instance’s own IID, the instance maintains a single target IID which

represents the destination IID for any events fired by the Module. A Module’s target IID is

assigned the null value by default, designating a “broadcast” event to all Modules. Module

events fired by the DTS Editor itself have an “anonymous” source IID of null, and most Modules

fire events with a target IID of null. TargetIIDs can, however, be set by the developer as

described later in this section.

F.2 Event Types

Four types of events are defined in
com.apelon.apps.dts.editor.modules.DTSEditorModuleEventType:

The CURRENT_LOCAL_NAMESPACE_EVENT is fired by the DTS Editor on start-up, or when the

user selects a new Current Local Namespace. Both the sourceIID and targetIIDs are always

DTSEditorModuleEventType CURRENT_LOCAL_NAMESPACE_EVENT

DTSEditorModuleEventType STATUS_EVENT

DTSEditorModuleEventType TRANSFER_EVENT

DTSEditorModuleEventType EXIT_EVENT

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 28

null. The value is the name of the selected Namespace. The DTSStatus Module, for example,

listens for this event and updates its display accordingly.

The STATUS_EVENT is a general information event. The value can be any object, although

typically it is simply a message string. This string is shown in the DTSStatus Module message

area.

The TRANSFER_EVENT is fired by a Module when it wishes to transfer a selected object to

another panel, commonly due to an enabled “Click to Edit” option. The sourceIID is the

initiating Module IID, the targetIID is usually null, and the value is a DTS Transferable, e.g. a

ConceptTransferable, TermTransferable, DTSPropertyTransferable, etc. DTS

transferables are all subclasses of the com.apelon.beans.dts.plugin.transferable

package. Use of the Transferable interface can often facilitate processing of a

TRANSFER_EVENT by mimicking existing Drag and Drop actions. See Drop Functionality in the

Example section for more information.

The EXIT_EVENT is fired by the DTS Editor when the Editor is about to be closed. This event

can be used to perform any required Module “clean-up”.

F.3 Event Processing

All events are delivered to all Modules via the DTSEditorModuleEventListener interface.

The default behavior for a Module listener is to process (recognize) any broadcast events (target

is null) or any event for which the event’s TargetIID is the same as the Module’s IID. In order

to provide fine-grained control of events, and to implement a general mechanism for inter-

Module communication, there are ways of getting and setting both the source and target IIDs for

a Module instance.

As described above, the DTS Editor assigns an integer string IID when a Module is instantiated.

Developers can override this default assignment in the Layout file by using the IID and

TargetIID elements in the Tab and Panel tags.

An example of IID assignment is the default DTS Editor MultiPanel repeated below:

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 29

Without the TargetIID assignments, TRANSFER_EVENTs generated by the DTSTree,

DTSWalker, and DTSSearch panels would have their default target IID set to null and be

“broadcast” to all panels. The TargetIID assignments, coupled with the explicit IID

assignment on the DTSDetail panel, ensures that these events will only be accepted by the

DTSDetail instance created at layout time.

See Appendix A – DTS Editor Modules for descriptions of event processing for all of the standard

DTS Editor Modules.

F.4 Programmatic Setting of IIDs

IID values can be read programmatically using methods from the DTSEditorModuleMgr class

instance passed to base Module classes during initialization (see the Example Module section

below for details). The getter methods are:

public String getComponentIID(JComponent comp)

public String getTargetIID(JComponent comp)

JComponent comp is the desired Module instance’s component, typically “this”.

There is no programmatic way to set a Module instance’s IID, but the target IID can be set when

creating a new Module instance. Consider the case of a Module that wants to open a floating

DTSDetail panel and then send Concepts for display (via a “Click to Edit” function); or a

Module that wants to open a floating DTS Search panel and have search results sent back to

itself. These Modules can invoke the floating panel, and set its target IID, via the following

method in DTSEditorModuleMgr:

<MultiPanel Type="V">

<MultiPanel Type="H">

<TabPanel>

<Tab Name="tree" ModuleName="DTSTree"

TargetIID=”detail”/>

<Tab Name="walker" ModuleName="DTSWalker"

TargetIID=”detail”/>

<Tab Name="search" ModuleName="DTSSearch"

TargetIID=”detail”/>

</TabPanel>

<Divider/>

<TabPanel>

<Tab Name=”detail” ModuleName="DTSDetail"

IID=”detail”/>

</TabPanel>

</MultiPanel>

</MultiPanel>

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 30

public String showModuleComponent(String compName,

HashMap<String,String> options, boolean modal, String title, String

targetIID)

This method displays a Module component as a floating dialog. It creates a new component

instance (named by compName) passing an options Java HashMap of String key/value pairs,

wraps it in a JDialog, and sets the Dialog’s modality, title and the instance’s target IID. The

method returns the internally-generated IID of the new instance. Thus the Module can now send

an event to the returned IID, or receive events from the Module. See the DTSEditorModuleMgr

Javadoc for additional methods that deal with IIDs.

One clarification is needed for the compName argument. A Module usually, but not always,

consists of a single menu option, optionally a single Toolbar item, and a single visible panel.

There are, however, common exceptions:

• The DTSStatus Module includes only a panel. No menu or toolbar items are exposed.

• The DTSConnect Module builds three menu items: Connect, Disconnect, and

Connect Parameters. Only one panel is exposed: that for Connect Parameters.

• The DTSSubset Module has two independent components, the SubsetEditor and

SubsetCompare, with two associated menu items but only one toolbar item.

To accommodate Modules with multiple panels such as DTSSubset, the Module Framework

defines Module Components. A Module Component is the logical name of a panel. When a

Module has only one component, the Module name can be used as the Module Component

name, e.g., DTSDetail. When there are multiple components, the Module Component name is

the concatenation of the Module name, a period, and the panel name, e.g.,

DTSSubset.SubsetEditor.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 31

G. Internationalization

While not formally a part of the Module Framework, the DTS Editor has been extended to

support “translation” (internationalization) of the Editor for non-English environments.

Internationalization support includes resource files for translations of prompts and messages and

layout considerations (top-to-bottom/bottom-to-top, left-to-right/right-to-left). Details on the

procedures for internationalizing the DTS Editor, and on building internationalized Editor

Modules, can be found in the Internationalizing DTS Guide.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 32

H. Example Module

This section will describe the process of creating a DTS Editor Module. The example is a

module named “DTSMonitor” that displays descriptions of events fired during a DTS Editor

session. (For ease of presentation, DTSMonitor does not follow internationalization policies.)

Here is a screen shot of the main DTSMonitor panel:

The complete DTSMonitor code can be found in your DTS installation at the following path:

samples\editormodule\src\com\apelon\modules\dts\editor\monitor

The samples\editormodule folder also contains readme and install.bat files. The latter file

compiles the source, builds a jar and places the jar in your lib\modules folder where it will be

recognized by the DTS Editor Module loader. As described below, the default Plug-in

implementation adds an item in the Toolbar, an item in the Tools menu, an item in the Help

menu, and an instance in the Editor right tab panel.

H.1 Module Registration

Like its Editor Plug-in predecessor, a Module base class must fulfill the following two conditions

to be recognized by the DTS Editor.

1. The base class extends the DTSEditorModule class.

2. The base class (and all the associated java class files) must reside in a package

recognized by the DTS Editor.

The simplest way for a prospective Module to be recognized is to create the Module in the

com.apelon.modules.dts.editor package or in any of its subpackages

(com.apelon.modules.dts.editor.*). This is the approach taken by the DTSMonitor

Module:

Package

package com.apelon.modules.dts.editor.monitor;

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 33

The DTS Editor will also search in other packages that are specified in the DTS Editor

configuration file (usually bin/editor/dtseditor.xml) as follows:

• Place the number of module packages to be searched in the modulePackageCount

property. For example, if there are two modules:

<property name="modulePackageCount" value="2">

• Place the names of the module packages in modulePackageName1..n properties:

<property name="modulePackageName1" value="com.mycompany.dts.plugin"/>

<property name="modulePackageName2"

value="com.mycompany.dts.plugin2"/>

The DTS Editor will search packages in the following order:

modulePackageName1…n

com.apelon.modules.dts.editor

com.apelon.modules.dts.editor.*

H.2 Imports

A Module needs to import the com.apelon.apps.dts.editor.modules package. This

package contains the following classes which contain fields and methods that provide access to

DTS Editor functionality:

• DTSEditorConfig - Provides access to DTS Editor configuration settings.

• DTSEditorModule – Must be extended by your module in order to be recognized as a

plug-in.

• DTSEditorModuleEvent – Defines DTSEditor Module events.

• DTSEditorModuleEventListener – Defines the interface for receiving Module

events.

• DTSEditorModuleEventType – Defines the types of Module events.

• DTSEditorModuleMgr – Allows the Module to access DTS Editor functions and DTS

Services.

• DTSModuleConfig – Used to access and save module specific properties.

The sections below describe how these classes are used in a typical custom Module. See the DTS

Javadoc for full information on the classes.

// Apelon Imports

import com.apelon.apps.dts.editor.modules.*;

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 34

H.3 Class Declaration

DTSEditorModule class must be extended to create a custom Module for the Editor. The

extending class must have a no parameter constructor or the class will not be recognized as

a Module.

Modules must override the getModuleName(), getModuleVersion(), and

getComponentShortName(String name) methods. The getModuleName method is called

at Module registration. The other methods are called as described later in this section. As

mentioned earlier, the Module short name is typically used as a tab name for TabPanels (see

the Editor Layout section).

Modules should also override, or at least confirm the default implementation, of the five

informational Layout methods. These methods are provided to assist Layout editors, in particular

the DTSLayout Module, to make Modules available in menus, toolbars, and layouts. (See the

Layout Editor section above for further information.) The methods are only called by Layout

editors. The five methods are:

• getComponentNames() This method returns an array of Strings representing the

components exposed by the Module. The strings should include the Module name and the

names of any Module components. The default implementation returns a single-entry

array with the Module name.

• isMenuComponent(String name) This method returns a Boolean designating

whether the named Module/Module component can server as a menu item. This method

should support all names returned by getComponentNames and the return should be

consistent with the values returned by getModuleMenuItems. The default

implementation returns true for the Module name and false otherwise.

• isToolbarComponent(String name) This method returns a Boolean designating

whether the named Module/Module component can server as a toolbar item. This method

should support all names returned by getComponentNames and the return should be

consistent with the values returned by getModuleToolbarItems. The default

implementation returns true for the Module name and false otherwise.

• isLayoutComponent(String name) This method returns a Boolean designating

whether the named Module/Module component can server as a layout item (has a callable

component). This method should support all names returned by getComponentNames

and the return should be consistent with the values returned by getModuleComponent.

The default implementation returns true for all names.

• hasOptions(String name) This method returns a Boolean designating whether the

named Module/Module component accept options. This method should support all names

returned by getComponentNames and the return should be consistent with the option

parameter passed in getModuleComponent. The default implementation returns false

for all names.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 35

H.4 Initializing the Module

As previously described, only getModuleName is called at Module registration. The

getModuleVersion is called as required for informational purposes. Most other Module

methods are invoked when the Module is “loaded”, either because the Module is explicitly

named in the Layout, or it is requested as a plug-in. The specific sequence of method calls is

different for these two cases. The description immediately below is for the Layout use-case. A

subsequent section will describe the plug-in case.

The sequence of actions taken by the Editor loader for a Layout use-case is:

• If a Module configuration file is specified by getDTSModuleConfigFile(), a

DTSModuleConfig object is set up. This object is available via the

getDTSModuleConfig method.

• The initModule method is called.

• If the Module name is specified in a Menu tag, menu items returned by

getModuleMenuItems are added to the menu

Class Declaration

public class DTSMonitor extends DTSEditorModule

implements DtsConnectionListener {

/** Component names */

private final static String MODULE_NAME = "DTSMonitor";

private final static String VERSION = “1.2”;

private final static String SHORT_NAME = "Monitor";

private final static String HELP_NAME = “DTS MonitorHelp”;

private final static String CONFIG_NAME = "DTSMonitorConfig";

public DTSMonitor() {

super();

}

public String getModuleName() {

return MODULE_NAME;

}

public String getModuleVersion() {

return VERSION;

}

public String getComponentShortName(String name) {

if (name.equals(getModuleName())) return SHORT_NAME;

return "";

}

//default implementations are correct for layout information methods

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 36

• If the Module name is specified in a ToolBar tag, toolbar items returned by

getModuleToolbarItems are added to the toolbar.

• The getModuleComponent method should be implemented if the Module name is

specified in the PanelLayout tag, or if floating panels are displayed via the

DTSEditorModuleMgr.showModuleComponent method.

Details of these steps are described below.

A Module can use a private configuration file to hold operational parameters/policies that can

persist across DTS Editor instances. To use a configuration file, a Module must override

getDTSModuleConfigFile to return the name of the configuration file. Typically, the file is

located in the default Editor directory which is bin/editor, and

getDTSModuleConfigFile returns just the file name (no path). The DTS Editor loader then

opens the file, creating it if it does not exist, and creates a DTSModuleConfig object which is

available to the Module through the getDTSModuleConfig method. We will describe the use

of the configuration file later in this example.

All plug-ins must implement initModule. This method is called by the DTS Editor at start-up

and serves three purposes:

1. Provides the Module with a copy of the DTSEditorModuleMgr class;

2. Informs the Module whether it is being initialized in the Layout or Plug-in mode; and

3. Allows for any Module-specific initialization steps to occur.

The reference to the DTSEditorModuleMgr class is the Module’s interface to the exposed

functionality of the DTS Editor. The DTSEditorModule.UsageType parameter is one of the

UsageType values LAYOUT or PLUGIN. DTSMonitor is written to permit its use in either Layout

or Plug-in modes. The primary difference is that in Plug-in mode, the Module must explicitly

place any components in the layout.

The following steps occur in the initModule implementation in the DTSMonitor example:

• Invokes the super class method to perform common initialize steps

• If in Plug-in mode, place the DTSMonitor panel in the Editor layout (additional details

will be provided in a later section)

The superclass initModule method performs two actions:

1. Initializes the moduleManager instance variable to hold a reference to the supplied

DTSEditorModuleMgr parameter. This value is frequently required within the custom

Module class.

2. Registers a DtsConnectionListener on the instance. This enables connection events

to be handled by the base Module class such as enabling and disabling of menu items.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 37

H.5 Getting Module Menu and Toolbar Items

After calling the initModule method, the DTS Editor retrieves Module menu and/or toolbar

entries if such entries are requested in the Layout. Action listeners need to be added to each item

to provide the desired functionality, usually opening of a floating panel.

The getModuleMenuItems method passes a parameter which is the name of the associated

menu. Since most Modules only place menu items in one menu, usually this parameter can

usually be ignored, but DTSMonitor includes a “help” menu item so the menu name is tested.

The buildMenuItem and buildToolbarItem methods are “helper” methods provided by

DTSEditorModule to simplify creation of select (menu and toolbar) items. See the

DTSEditorModule Javadoc for details.

The registerSelectItems(JComponent[] items) method is provided by

DTSEditorModule to support enabling and disabling of select items. This method simply

returns the array of JComponents passed in so it can be used “in-line”. The buildMenuItem

and buildToolbarItem methods described above disable their returned items. This is typically

appropriate since most select items are disabled before a server connection is established.

registerSelectItems adds the argument items to a selectItems List. When a DTS

connectionOpened event is received, all items on this list are enabled. When a DTS

connectionClosed event is received, the items are disabled. Individual Modules can, of

course, provide their own select item processing by overriding the connectionOpened and

connectionClosed events and/or not using registerSelectItems. Remember that a given

Layout can have multiple instances of a menu or toolbar item, so single instance variables with

these items should not be used.

Initialization

DTSEditorModuleMgr moduleMgr;

public String getDTSModuleConfigFile() {

return "DTSMonitor.xml";

}

public void initModule(DTSEditorModuleMgr mgr,

 DTSEditorModule.UsageType usage) {

// let the base class do its thing

super.initModule(mgr, usage);

//if in plug-in mode, add to layout

if (usage==DTSEditorModule.UsageType.PLUGIN){

 addMonitorComponent();

}

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 38

Menu Item Code

public JMenuItem[] getModuleMenuItems(String menuName) {

 if (menuName.equalsIgnoreCase(“help”)) {

 return (JMenuItem[])registerSelectItems(

 new JMenuItem[] { getDTSMonitorHelpMenuItem() });

 }

 else {

 return (JMenuItem[])registerSelectItems(

 new JMenuItem[] { getDTSMonitorMenuItem(),

 getDTSMonitorConfigMenuItem() };

 }

}

private JMenuItem getDTSMonitorMenuItem() {

 return buildMenuItem("DTS Monitor …", -1,

 "Open DTSMonitor",

 null, null, MODULE_NAME,

 new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dtsMonitorAction(e);

 }

 }

);

}

private JMenuItem getDTSMonitorConfigMenuItem() {

 return buildMenuItem("DTS Monitor Configuration …", -1,

 "Open DTSMonitor Configuration",

 null, null, CONFIG_NAME,

 new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dtsMonitorConfigAction(e);

 }

 }

);

}

private JMenuItem getDTSMonitorHelpMenuItem() {

 return buildMenuItem("DTS Monitor Help …", -1,

 "Open Help for DTS Monitor ",

 null, null, HELP_NAME,

 new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dtsMonitorHelpAction(e);

 }

 }

);

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 39

H.6 Getting Plug-in Menus, Menu Items and Toolbar Items

In Plug-in mode, the Module can specify whole new menus, menu items and toolbar items. For

Plug-in use, the getModuleToolbarItems method is called to retrieve any plug-in toolbar

items. The method is the same as that used in Layout mode. For menu items, however, the

getModuleMenuItems method has an integer parameter, corresponding to a particular menu

group in the standard DTS Editor layout. The menu group parameter value is defined in

DTSEditorModule:

Toolbar Item Code

public JComponent[] getModuleToolbarItems() {

 return registerSelectItems(

new JComponent[] { getDTSMonitorToolbarItem() });

}

private JComponent getDTSMonitorToolbarItem() {

 URL url = getClass().getResource("apelicon16.gif");

 ImageIcon toolbarImage = new ImageIcon(url, "GIF");

 return buildToolbarItem(toolbarImage, "Open DTSMonitor",

 new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dtsMonitorAction(e);

 }

 }

);

}

public static final int FILE_MENU_ITEMS = 1;

public static final int VIEW_MENU_ITEMS = 2;

public static final int TOOLS_MENU_ITEMS = 3;

public static final int OPTIONS_MENU_ITEMS = 4;

public static final int HELP_MENU_ITEMS = 5;

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 40

Here is the code for creating the DTSMonitor Plug-in menu items:

Again, registerSelectItems is used to automatically handle enabling and disabling these

items.

Finally, while not used in the DTSMonitor Module, getModuleMenus can be used to place one

or more complete menus in the DTS Editor Menu bar. Menus must already be populated with the

desired menu items. Menu(s) will be placed to the left of the Help menu.

H.6.1 Setting Plug-in Components

As shown in the DTSMonitor initModule listing above, Plug-in modules must explicitly place

their components in the standard DTS Editor layout. Two methods are provided in

DTSEditorModule for this purpose:

public JTabbedPane getLeftTabbedPane()

public JTabbedPane getRightTabbedPane()

These methods return the left and right JTabbedPane instances for the standard DTS Editor

layout. The following method shows how DTSMonitor places its main component for Plug-ins:

Menu Item Code

public JMenuItem[] getModuleMenuItems(int group) {

// Create an empty array of JMenuItems to hold our custom items

JMenuItem[] menuItems = new JMenuItem[0];

// Create a list for the desired menu group

switch (group) {

 case TOOLS_MENU_ITEMS:

 menuItems = new JMenuItem[] {getDTSMonitorMenuItem(),

 getDTSMonitorConfigMenuItem()};

 break;

 case HELP_MENU_ITEMS:

 menuItems = new JMenuItem[]

{ getDTSMonitorHelpMenuItem()};

 break;

 default:

 break;

}

return (JMenuItem[])registerSelectItems(menuItems);

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 41

The second argument to the getModuleComponent method is a Java HashMap of String

key/value pairs that is passed to the component (null in the above example). This options

HashMap argument is often generated from the Options element in the Panel and Tab tags in

the DTS Editor Layout file as described in the Panel Tag section above. The interpretation of the

option values is entirely up to the component.

H.7 Handling Connection Events

A Module can respond to the DTS Editor’s server connection events by overriding the default

connectionOpened, connectionWillClose, connectionClosing, and

connectionClosed methods provide in DTSEditorModule. This is typically not required

unless special select item handling is necessary. DTSMonitor does not override the default

methods.

H.8 Initialization Summary

A Module needs to implement initModule and optionally, getDTSModuleConfigFile. If

there is a GUI, the Module should provide access by implementing getModuleMenus (if a

Plug-in), getModuleMenuItems and/or getModuleToolbarItems. To support enablement

of select items, the Module should use the registerSelectItems method or provide its own

custom handling of items and connection events

The next step is to design and implement Module panel functionality.

H.9 Creating a Panel for the Module

Although not required, a custom Module is likely to be GUI-based. This will require the

definition of one or more panels that will be the user interface to the Module’s functionality. The

panels access DTS and DTS Editor functionality (APIs) via the copy of the

DTSEditorModuleMgr class which was passed to the Module in the initModule method.

Layout panels are accessed via the getModuleComponent method. Floating panels use the

DTSEditorModuleMgr.createDialog or the DTSEditorModuleMgr.showComponent

methods. All these methods require creation of a JPanel that contains the Module GUI.

Component Placement Code

/** Add the component to the right tab pane */

private void addMonitorComponent() {

JTabbedPane pane = moduleMgr.getRightTabbedPane();

pane.addTab(getComponentShortName(getModuleName()),

getModuleComponent(getModuleName(), null));

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 42

The DTSMonitor Module implements a Layout and floating panel for displaying events, and a

configuration panel for specifying the types of events to be displayed. A

DTSEditorModuleMgr helper method is used to show the help URL. This is the code to invoke

the panels:

H.10 DTSMonitor Functionality

The objective of the DTSMonitor Module is to display/report the various events that are

available in the DTS Editor environment. Four types of events are supported:

• DTS Connection Events • DTS Data Change Events

• DTS Editor Module Events • DTS Drop Events

Panel Handling Code

/** Open Monitor panel */

private void dtsMonitorAction(ActionEvent e) {

final DTSMonitorPanel panel = getDTSMonitorPanel();

JDialog dialog = moduleMgr.createDialog(panel,

"DTS Monitor", 0,);

dialog.setModal(false);

dialog.setVisible(true);

}

/** Open Monitor Configuration Panel */

private void dtsMonitorConfigAction(ActionEvent e) {

DTSMonitorCfgPanel panel = getDTSMonitorConfigPanel();

JDialog dialog = moduleMgr.createDialog(panel,

"Configure DTSMonitor", 0, 0);

dialog.setModal(true); //modal

dialog.setVisible(true);

}

/** Show the DTSMonitor help file */

private void dtsMonitorHelpAction(ActionEvent e) {

URL url = getHelpRelativePath();

moduleMgr.showHelpPanel(url);

}

/** get a new DTSMonitorPanel */

private DTSMonitorPanel getDTSMonitorPanel() {

return new DTSMonitorPanel(moduleMgr, getDTSModuleConfig());

}

/** get a new DTSMonitorConfigPanel */

private DTSMonitorCfgPanel getDTSMonitorConfigPanel() {

return new DTSMonitorCfgPanel(moduleMgr,

getDTSModuleConfig());

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 43

A configuration panel is available to select/deselect event types for display. Standard Java Swing

techniques and components are used in the implementation, and will not be reviewed here.

Similarly, the reader is referred to the sample code for details on the specific output logic for the

various event types.

Two points are worth noting. First, the constructor tests to see if a connection is already present.

This is typically required when the Module can be used as a Layout panel, since it cannot be

assumed that a connection is open when the Layout is built, and data listeners can only be added

when a connection is present. Second, the Module supports an associated Details popup panel. If

a connection is already present, and the popup is specified in the configuration, a DTSDetails

Module panel is opened using the familiar SwingUtilities.invokeLater pattern.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 44

Panel Constructor Code

public class DTSMonitorPanel extends JPanel

implements DtsConnectionListener,

 DTSEditorModuleEventListener,

 ConceptListener, TermListener,

 KBTypeListener, ClassifyListener,

 SubsetListener {

 private DTSEditorModuleMgr dtsModuleMgr;

 private DTSModuleConfig config;

 private JTextArea textArea;

 private String detailIID; //IID of DTSDetail popup

 public DTSMonitorPanel(DTSEditorModuleMgr mgr,

 DTSModuleConfig config) {

 super();

 dtsModuleMgr = mgr;

 this.config = config;

 try {

 buildPanel();

 addListeners();

 setTransferHandler(new MonitorTransferHandler());

 //if this is a floating panel, enable the data listeners

 if (DTSAppManager.getQuery().isOpen()) {

 enableDataListeners(true);

 detailIID = null; //to be used later

 showPopup();

 }

 }

 catch (Exception ex) {

 dtsModuleMgr.handleException("Error constructing

DTSMonitorPanel", ex);

 dtsModuleMgr.showErrorMessage("Cannot construct

DTSMonitorPanel.");

 }

 }

. . .

 public void addListeners() {

 dtsModuleMgr.registerConnectionListener(this);

 dtsModuleMgr.registerModuleEventListener(this);

 }

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 45

H.10.1 Connection Event Functionality

As shown above, the listener for Connection events is set up in the DTSMonitorPanel

constructor. This listener can be registered independent of the connection status. The events

themselves are processed by the DtsConnectionListener interface methods:

private void openPopup() //if enabled, open a popup DTSDetail

panel

 //defer so it doesn't get hidden by main panel

 if (config.getBooleanProperty(DTSMonitor.DETAIL_POPUP, false)) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 detailIID = dtsModuleMgr.showModuleComponent("DTSDetail",

 null, false, "DTS Monitor Details",

 null, //no target

needed

 20, 20, //relative location

 300, 300); //DTSDetail size

 }

 });

 }
 }

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 46

Note how the DTSModuleConfig object is used to “filter” the events to be displayed.

H.10.2 Module Event Functionality

The DTS Module event listener is similarly set up in the DTSMonitorPanel constructor. The

listener interface is straightforward: it checks if Module events are to be reported, then prints the

event in a standard format. The code to construct a Transferable string is shared with that for

DnD:

Connection Processing Code

public void connectionOpened(DtsConnectionEvent event) {

 enableDataListeners(true);

 if (config.getBooleanProperty(DTSMonitor.CONNECT_EVENTS, true)) {

 addEvent("Connection Opened Event Received");

 enableEventArea(true);

 }

 openPopup();

}

public void connectionWillClose(DtsConnectionEvent event,

 ConnectionCloseVeto vetoClose) {

 if (config.getBooleanProperty(DTSMonitor.CONNECT_EVENTS, true)) {

 addEvent("Connection Will Close Event Received");

 }

}

public void connectionClosing(DtsConnectionEvent event){

 if (config.getBooleanProperty(DTSMonitor.CONNECT_EVENTS, true)) {

 addEvent("Connection Closing Event Received");

 }

}

public void connectionClosed(DtsConnectionEvent event) {

 enableDataListeners(false);

 if (config.getBooleanProperty(DTSMonitor.CONNECT_EVENTS, true)) {

 addEvent("Connection Closed Event Received");

 enableEventArea(false);

 }

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 47

H.10.3 Data Change Event Functionality

The DTSMonitor Module recognizes all six DTS “data” events:

• ConceptEvent

• TermEvent

• KBTypeEvent

• ClassifyEvent

• NamespaceEvent

• SubsetEvent

Listeners for these events can only be registered once a connection has been made, so the

registration is encapsulated by an enableDataListener() method called from the connection

listeners. Refer to the individual event listeners for details on event object reporting.

Module Event Processing Code

public void eventOccurred(DTSEditorModuleEvent me) {

 if (config.getBooleanProperty(DTSMonitor.MODULE_EVENTS, true)) {

 //build a common preamble

 String preamble = "Module Event: "+me.getEventType()+"=["+

 (me.getSourceIID()==null?"null":me.getSourceIID())+":"+

 (me.getTargetIID()==null?"null":me.getTargetIID())+"] ";

 if

(me.getEventType()==DTSEditorModuleEventType.TRANSFER_EVENT) {

 addEvent(preamble+

 getTransferableDescription((Transferable)me.getValue()));

 }

 else {

 addEvent(preamble+"'"+me.getValue().toString()+"'");

 }

 }

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 48

Data Change Processing Code

/**

 * Add/remove data listeners

 * @param enable true to register listeners, false to remove

 */

private void enableDataListeners(boolean enable) {

 if (enable) {

DTSAppManager.getQuery().getAssociationQuery().addConceptListener(th

is);

DTSAppManager.getQuery().getTermSearchQuery().addTermListener(this);

DTSAppManager.getQuery().getAssociationQuery().addKBTypeListener(thi

s);

DTSAppManager.getQuery().getClassifyQuery().addClassifyListener(this

);

DTSAppManager.getQuery().getNamespaceQuery().addNamespaceListener(th

is);

DTSAppManager.getQuery().getSubsetQuery().addSubsetListener(this);

}

 else {

DTSAppManager.getQuery().getAssociationQuery().removeConceptListener

(this);

DTSAppManager.getQuery().getTermSearchQuery().removeTermListener(thi

s);

DTSAppManager.getQuery().getAssociationQuery().removeKBTypeListener(

this);

DTSAppManager.getQuery().getClassifyQuery().removeClassifyListener(t

his);

DTSAppManager.getQuery().getNamespaceQuery().removeNamespaceListener

(this);

DTSAppManager.getQuery().getSubsetQuery().removeSubsetListener(this)

;

 }

}

 else {

 addEvent("Invalid Concept Event”);

 }

 }

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 49

H.11 Drop Functionality

If enabled in the configuration file, the DTSMonitor Module reports drop events on the monitor

panel. Much of the editing done in the DTS Editor relies on or is facilitated by DnD

functionality. Support for DnD between existing DTS panels and custom Modules or between

different custom Modules panels can greatly enhance the capabilities of each.

Various DTS objects can be dragged and dropped between the DTS Editor and a Module. These

include Concept Association, Concept, Property, Role, Subset, Synonym, Term Association and

Term. Each of these has a corresponding Transferable object such as ConceptTransferable,

TermTransferable, etc. In turn, each of these Transferable objects contain certain

DataFlavors that can be retrieved once the object is dropped.

For instance, if a ConceptAssociationTransferable is dropped, a Concept Association,

DTS Concept or String object can be obtained and used in the plug-in. DTS transferable objects

are all contained in subclasses of the com.apelon.beans.dts.plugin.transferable

package. DnD support for standard DTS Modules is described in Appendix A – DTS Editor

Modules.

DTSMonitor drop recognition is provided via an implementation of the Java

TransferHandler class called MonitorTransferHandler. An instance of this class is

added to DTSMonitorPanel in the constructor (see the DTSMonitor Functionality section

above). To accept drops only the canImport() and importData() methods need be

implemented. In the code below, the isDataFlavorSupported() method checks for a valid

DTS Transferable flavor. If this call is successful, importData() extracts the transfer data and

decodes the DTS object type using the (shared) getTransferableDescription() method.

/** Representative data event handler */

public void conceptActionOccurred(ConceptEvent event) {

 if (config.getBooleanProperty(DTSMonitor.DATA_EVENTS, true)) {

 int eventNum = event.getEventType();

 if (eventNum == ConceptEvent.EVENT_TYPE_NEW) {

 addEvent("Concept '"+event.getConcept().getName()+"' added");

 }

 else if (eventNum == ConceptEvent.EVENT_TYPE_MODIFY) {

 addEvent("Concept '"+event.getConcept().getName()+"'

modified");

 }

 else if (eventNum == ConceptEvent.EVENT_TYPE_DELETE) {

 addEvent("Concept '"+event.getConcept().getName()+"'

deleted");

 }

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 50

H.12 Showing Drop Details

Floating Module panels are usually invoked through Menubar or Toolbar item selections, but the

DTS Editor Module Framework also provides a method for programmatically opening panels

within Module code. The DTSMonitor Module implements an option to show a popup

Drop Functionality Code

// Handle a Drop on the panel

private class MonitorTransferHandler extends TransferHandler {

 //do we support this drop

 boolean canImport(JComponent comp, DataFlavor[] transferFlavors) {

 for (DataFlavor flavor : transferFlavors)

 if (isDataFlavorSupported(flavor)) return true;

 false;

 }

 //process a drop

 public boolean importData(JComponent comp, Transferable trans) {

 if (!config.getBooleanProperty(DTSMonitor.DND_EVENTS, true))

 return false;

 if (trans == null) {

 textArea.append("Drop failed. No data found in the drop

object.");

 return false;

 }

 addEvent("Drop of "+getTransferableDescription(trans));

 return true;

 }

 //test for supported flavors

 private boolean isDataFlavorSupported(DataFlavor flavor) {

 if (flavor.equals(DTSDataFlavor.multiFlavor)) return true;

 if (flavor.equals(DTSDataFlavor.conceptFlavor)) return true;

 if (flavor.equals(DTSDataFlavor.synonymFlavor)) return true;

 if (flavor.equals(DTSDataFlavor.propertyFlavor)) return true;

 if (flavor.equals(DTSDataFlavor.roleFlavor)) return true;

 if (flavor.equals(DTSDataFlavor.conceptAssociationFlavor))

return true;

 if (flavor.equals(DTSDataFlavor.termFlavor)) return true;

 if (flavor.equals(DTSDataFlavor.termAssociationFlavor))

return true;

 if (flavor.equals(DTSDataFlavor.subsetFlavor)) return true;

 return false;

 }

} //end of transfer handler

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 51

DTSDetail panel and fill this panel from DnD Concept/Term events. The code to invoke a

floating DTSDetail panel is show below. Invocation is based on a configuration setting and is

deferred to let the UI settle.

To direct the DnD transferable to the created panel, a Module event is fired whose target IID is

the IID of the DTSDetail panel. This is the reason the IID is saved in the detailIID variable

above. Here is the associated code from the DnD handler:

H.13 Error Handling

Modules can write error messages to the standard DTS Editor log file and also display popup

message dialogs by using the DTSEditorModuleMgr showErrorMessage() and

handleException() methods. The example below is taken from the DTSMonitorCfgPanel

constructor.

Panel Invocation Code

if (config.getBooleanProperty(DTSMonitor.DETAIL_POPUP, true)) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 detailIID = dtsModuleMgr.showModuleComponent(

 "DTSDetail",

 "",

 false,

 "DTS Monitor Details",

 null, //no target needed

 20, 20, //Monitor-relative location

 300, 300); //DTSDetail size

 }

 });

}

Transfer Event Code

if (detailIID!=null) {

 dtsModuleMgr.fireModuleEvent(

 new DTSEditorModuleEvent(

 dtsModuleMgr.getComponentIID(DTSMonitorPanel.this),

 detailIID,

 DTSEditorModuleEventType.TRANSFER_EVENT,

 trans));

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 52

H.14 Configuration Management

The DTSMonitorCfgPanel enables the selection of which of the four event types should be

reported and whether a Details box should be opened for DnD events. These user selections are

saved in the Module’s configuration file, as specified by the getDTSModuleConfigFile()

method. A screen shot of the panel is shown below:

This panel uses standard Java Swing components for the GUI and will not be described further

here, but the code to load and unload the JCheckBox elements from and to the configuration file

is shown below. Access to the configuration object is provided via the DTSModuleConfig

object passed in the DTSMonitorCfgPanel constructor (see section above). Note that the

defaults used in the boolean property getters should be the same as those in the

DTSMonitorPanel event handling code to avoid inconsistent behavior.

Error Handling Code

public DTSMonitorCfgPanel(DTSEditorModuleMgr mgr,

 DTSModuleConfig config) {

 super(new BorderLayout());

 moduleMgr = mgr;

 this.config = config;

 try {

 buildPanel();

 }

 catch (Exception ex) {

 //log error and show error dialog

 moduleMgr.handleException(

 "Cannot construct DTSMonitorCfgPanel.", ex);

 }

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 53

Configuration Management Code

/**

 * Load the JCheckBoxes from the configuration file

 * Default is all true

 */

private void loadFromConfig() {

 connectBox.setSelected(config.getBooleanProperty(

 DTSMonitor.CONNECT_EVENTS, true));

 dataBox.setSelected(config.getBooleanProperty(

 DTSMonitor.DATA_EVENTS, true));

 dndBox.setSelected(config.getBooleanProperty(

 DTSMonitor.DND_EVENTS, true));

 moduleBox.setSelected(config.getBooleanProperty(

 DTSMonitor.MODULE_EVENTS, true));

 detailBox.setSelected(config.getBooleanProperty(
 DTSMonitor.DETAIL_POPUP, true));

}

/** Unload the JCheckBoxes into the configuration file

 * Return success flag

 */

private boolean saveToConfig() {

 config.storeBooleanProperty(

 DTSMonitor.CONNECT_EVENTS, connectBox.isSelected());

 config.storeBooleanProperty(

 DTSMonitor.DATA_EVENTS, dataBox.isSelected());

 config.storeBooleanProperty(

 DTSMonitor.DND_EVENTS, dndBox.isSelected());

 config.storeBooleanProperty(

 DTSMonitor.MODULE_EVENTS, moduleBox.isSelected());

 config.storeBooleanProperty(

 DTSMonitor.DETAIL_POPUP, detailBox.isSelected());

 try {

 config.saveProperties();

 return true;

 } catch (Exception e) {

 String err = "Unable to save DTSMonitor congiguration.";

 Categories.uiView().error(err, e);

 moduleMgr.showErrorMessage(err);

 return false;

 }

}

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 54

I. Converting Plug-in Modules

I.1 Converting a Pre-V4 Plug-in

The process to convert a pre-V4 plug-in module to a V4.3 Module is straightforward. Simply

perform the following steps in the Module’s base class:

1. Replace the previous initModule method with

initModule(DTSEditorModuleMgr mgr, UsageType usage).

2. Add the getModuleName(), getModuleVersion(), and

getComponentShortName(String name) methods.

3. Add the getModuleComponent(String compName, HashMap<String,String>

options) method if a Layout component can be specified or the

DTSEditorModuleMgr.showModuleComponent() method is used.

4. Add the getModuleMenuItems(String menuName) method.

5. See the following sections for additional, version-specific, steps.

I.2 Converting to V4.3

V4.3 added a number of new DTSEditorModule methods to support Layout editors and

simplify management of menu and toolbar items. None of these additions are required, all

operations are backwards compatible, but review of the features is recommended to provide

more accurate representation of Module capabilities in Layout editors and elimination of

potentially redundant code.

1. Review and add, if necessary, implementations of the five Layout information methods:

getComponentNames(), isMenuComponent(), isToolbarComponent(),

isLayoutComponent(), and hasOptions().

2. Add super.initModule(mgr, usage) to the local initModule method.

3. Delete any local instance variable for the Module’s DTSEditorModuleMgr and replace

references with moduleManager.

4. Delete any local DtsConnectionListener registration in favor of that from the parent

class.

5. Delete any menu or toolbar item instance variables and use registerSelectItems to

maintain item references. Review use of custom connectionOpened and

connectionClosed handlers for select items enablement versus that provided by the

parent class. See the descriptions in Getting Module Menu and Toolbar Items above for

further information.

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 55

J. Appendix A – DTS Editor Modules
This Appendix describes the Modules provided in the standard DTS Editor distribution. The descriptions include details on access options, events

Drag and Drop (DnD) support, and Module options.

Module Name Short

Name

Access Events DnD Capability Options

DTSAbout:

A panel that displays
information about the DTS
Editor.

About Menu item and
floating panel

None None None

DTSAssociation:

A panel for creating and editing
DTS Associations.

Associations Menu item, toolbar

item, floating panel
and layout panel

Fires DTS
ConceptEvents

Drag and Drop is supported in

From Concept/Term and

To Concept/Term combos.

Drop of Associations,
Synonyms and Roles are also
supported (dropped value is the
Target).

None

DTSAuthority:

A panel for creating and editing

DTS Authorities.

Authorities Menu item,
floating panel and

layout panel

None Drag of Authorities from edit
panel is supported.

None

DTSClassify:

A panel for performing
classification of
OntylogExtension Namespaces.

Classify Menu item, toolbar
item and floating
panel.

None Drag of Concepts from error
tabs is supported.

None

DTSClipboard:

A panel for modifying the

“Cut” string value for DTS
objects.

Clipboard Menu item and
floating panel.

None None None

DTSConfiguration:

A panel for viewing and setting
DTS Editor configuration
options

Configuration Menu item and
floating panel

None None None

DTSConnect:

A set of operations (Connect,

Disconnect, and Connect

Parameters) for handling

Connect Three menu items,
two toolbar items

(Connect and

Disconnect).
Connect

Fires
DTSConnectionEvent

s

None None

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 56

connection to and
disconnection from a DTS
Knowledgebase.

Parameters

floating panels.

DTSDetail:

A panel for displaying the
details for DTS Concepts and

Terms.

Detail Menu item, toolbar
item, floating panel
and layout panel

Responds to incoming
Concept/Term

TRANSFER_EVENTs and

loads the panel with the
Concept/Term if the
event’s Target IID is the
IID of the DTSDetail

instance.

Loads the associated tab panel
on drop of Concepts, Terms,
Namespaces, Authorities and

Subsets. Drops of Synonyms,
Roles and Associations load the
associated target

Term/Concept. Copy (Ctrl)

drop of Synonyms, Properties,
Roles, and Associations, adds a
copy of the attribute to the
focus as permissible. Drag
supported from focus Concept,
Term, Namespace, Authority,

and Subset as well as
Synonyms, Properties, Roles
and Associations.

The following options
are supported:
do - display-only

cn - Concept tab
tm – Term tab
ns – Namespace tab
au – Authority tab
sb – Subset tab
pos:t – tabs on top

(default)
pos:r – tabs on right
pos:b – tabs on bottom
pos:l – tabs on left

DTSExit:

Executes an exit operation from
the DTS Editor application.

Exit None Fires an EXIT_EVENT on

selection

None None

DTSHelp:

A panel that displays the DTS

Editor help topics.

Help A menu item and
floating panel

None None None

DTSLayout:

A panel for editing and
selecting Layouts.

Layout Two menu items,
and a floating panel

None None None

DTSLocalNamespace:

A panel that permits selection
of the Current Local
Namespace.

Local
Namespace

Menu item, toolbar
item and floating
panel

Fires CURRENT_LOCAL_
NAMESPACE_EVENT

None None

DTSModuleManager:

A panel for adding, updating
and deleting Modules.

Module

Manager

Menu item and

floating panel

None None None

DTSMonitor:

A demonstration panel that
displays DTSEditor events.

Monitor Menu item, toolbar
item, floating panel
and layout panel

On receipt of an object
drop in the Module, fires a

TRANSFER_EVENT

to a Module-subordinate
Detail Panel if so enabled

Drop of all objects is supported. None

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 57

in the DTSMonitor
configuration file.

DTSNamespace:

A panel for creating and editing
of Namespaces, including
Namespace and Version

Properties.

Namespaces Two menu items,
two floating panels
and one layout
panel

(NamespaceEdi

tor)

Fires DTS
NamespaceEvents

Drag of Namespaces from edit
panel is supported.

None

DTSNotificationsConfig:
A panel for configuring server
(Pub/Sub) notifications.

Options One menu item and
one floating panel

None None None

DTSPreference:

A set of menu items for
configuring/resetting DTS
Editor panel preferences.

Preference Menus Items Preference Menu Items None

DTSProperty:

A panel for creating and editing
Properties.

Properties Menu item, toolbar

item, floating panel
and layout panel

Fires DTS
ConceptEvents

Drag and Drop supported by

Concept/Term combo. Drop

of Associations, Synonyms, and
Roles are also supported
(dropped value is the Target).

None

DTSSearch:

A panel for searching the DTS
Knowledgebase.

Search Menu item, toolbar

item, floating panel
and layout panel

Fires TRANSFER_EVENT

on concept selection if the
Click to Edit option is
enabled.

Drag and Drop supported by

Concept/Term combo. Drop

of Associations, Synonyms, and
Roles are also supported
(dropped value is the Target).

Drag supported from any
Concept/Term in the results
window.

None

DTSStatus:

The information panel typically
displayed at the bottom of the
DTS Editor.

Status A layout panel. Listens for the

TRANSFER_EVENT,
CURRENT_LOCAL_NAME

SPACE, and

STATUS_EVENT events

and displays event content.

None None

DTSSubset:

Panels for creating, editing and
comparing subsets.

Subset Three menu items,
one toolbar item,
three floating
panels and two
layout panels

(SubsetEditor

and

Fires DTS
SubsetEvents.

Drag of Subsets from edit panel
is supported.

None

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 58

SubsetCompare

).

DTSSynonym:

A panel for creating and editing
Synonyms.

Synonyms Menu item, toolbar
item, floating panel
and layout panel

Fires DTS
ConceptEvents.

Drag and Drop is supported by
Concept and Term combos.

Drop of Associations,

Synonyms, and Roles are also
supported (dropped value is the
Target).

None

DTSTree:

A panel that displays
Namespaces and Namespace

trees.

Tree A menu item,
toolbar item,
floating panel and

layout panel

Fires a
Namespace/Concept

TRANSFER_EVENT on

selection if the Click to
Edit option is enabled.
Responds to incoming
Concept

TRANSFER_EVENTs and

loads the tree with the
Concept if the event’s
Target IID is the IID of the

DTSTree instance.

Drag and Drop is supported by

the Focus Concept combo.

Drop of Associations and Roles
are also supported (dropped
value is the Target). Drop into
the tree window loads tree for
Concept. Drag supported from

any Concept in tree window.
Drag supported from any
Namespace or Concept in tree
window.

None

DTSTypes:

A panel for creating and editing
Attribute Types.

Types Menu item,
floating panel and
layout panel

Fires DTS
KBTypeEvents.

None None

DTSUserManager:

A panel that supports creation
and editing of DTS Roles and
assignment to Users.

UserManager Menu item and
floating panel.

None None None

DTSVersion:

Panels for comparing Concept
Versions and viewing Concept
History.

Version Two menu items,

two floating and
two layout panels

(ConceptCompa

re and
SubsetCompare

).

None Drop is supported by Concept

combos in both panels.

None

DTSWalker:

A panel that displays
expandable tree views of a
focus Concept’s parents and

children.

Walker Menu item, toolbar
item, floating panel
and layout panel

Fires a Concept

TRANSFER_EVENT on

selection if the Click to
Edit option is enabled.
Responds to incoming
Concept

Drop is supported by the

Focus Concept combo and

both tree views: effect is to set
the Focus Concept. Drop of
Associations and Roles are also
supported (dropped value is the

None

DTS 4: Editor Module Guide

© 2023 Apelon, Inc. Hingham Massachusetts

Page | 59

TRANSFER_EVENTs and

loads the focus concept
with the Concept if the

event’s Target IID is the
IID of the DTSWalker
instance.

Target). Drag supported from

the Focus Concept

combo and any Concept in the
tree windows.

Apelon Distributed Terminology System (DTS) – DTS Editor Module Guide

©1999-2021 Apelon, Inc. All Rights Reserved. 60

K. Appendix B – Standard DTS Editor Layout File

<?xml version="1.0" encoding="UTF-8"?>

<!-- Layout V2 Default DTS Layout saved by dtsadmin on 12 Apr 2015

14:37:20 –

 ->

<Layout EnablePlugins="true" Description="Apelon Standard Layout"

Width="0"

 Height="0" > <MenuBar>

<Menu Command="file" Mnemonic="f" Name="File">

 <MenuItem ModuleName="DTSConnect"/>

 <Separator/>

 <SelectItem ModuleName="DTSExit"/>

</Menu>

<Menu Command="tools" Mnemonic="t" Name="Tools">

 <SelectItem ModuleName="DTSTree"/>

 <SelectItem ModuleName="DTSSearch"/>

 <SelectItem ModuleName="DTSWalker"/>

 <Separator/>

 <SelectItem ModuleName="DTSDetail"/>

 <SelectItem ModuleName="DTSAssociation"/>

 <SelectItem ModuleName="DTSProperty"/>

 <SelectItem ModuleName="DTSSynonym"/>

 <Separator/>

 <SelectItem ModuleName="DTSTypes"/>

 <Separator/>

 <SelectItem ModuleName="DTSNamespace"/>

 <SelectItem ModuleName="DTSSubset"/>

 <SelectItem ModuleName="DTSAuthority"/>

 <Separator/>

 <SelectItem ModuleName="DTSClassify"/>

 <SelectItem ModuleName="DTSVersion"/>

</Menu>

<Menu Command="options" Mnemonic="o" Name="Options">

 <SelectItem ModuleName="DTSClipboard" />

 <SelectItem ModuleName="DTSConfiguration"/>

 <SelectItem ModuleName="DTSLayout" />

 <SelectItem ModuleName="DTSLocalNamespace"/>

 <SelectItem ModuleName="DTSModuleManager"/>

 <SelectItem ModuleName="DTSPreference"/>

 <SelectItem ModuleName="DTSUserManager"/>

 </Menu>

 <Menu Command="help" Mnemonic="h" Name="Help">

 <SelectItem ModuleName="DTSHelp"/>

 <Separator/>

 <SelectItem ModuleName="DTSAbout"/>

 </Menu>

 </MenuBar>

 <ToolBar>

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.5.2/docs/com/apelon/apps/dts/editor/modules/DTSModuleConfig.html
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml
file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.5.2/javadoc/com/apelon/beans/dts/plugin/transferable/AbstractTransferable.html

Apelon Distributed Terminology System (DTS) – DTS Editor Module Guide

©1999-2021 Apelon, Inc. All Rights Reserved. 61

 <SelectItem ModuleName="DTSConnect"/>

 <Separator/>

 <SelectItem ModuleName="DTSTree"/>

 <SelectItem ModuleName="DTSSearch"/>

 <SelectItem ModuleName="DTSWalker"/>

 <Separator/>

 <SelectItem ModuleName="DTSLocalNamespace"/>

 <SelectItem ModuleName=”DTSClassify” />

 <Separator/>

 <SelectItem ModuleName="DTSDetail"/>

 <SelectItem ModuleName="DTSAssociation"/>

 <SelectItem ModuleName="DTSProperty"/>

 <SelectItem ModuleName="DTSSynonym"/>

 <Separator/>

 <SelectItem ModuleName="DTSSubset"/>

 <Separator/>

 <SelectItem ModuleName="DTSHelp"/>

 </ToolBar>

 <PanelLayout continuousLayout="true">

 <MultiPanel Type="v" >

 <MultiPanel Type="h" >

 <TabPanel Placement="t" >

 <Tab >

 <Panel ModuleName="DTSTree" TargetIID="detail" />

 </Tab>

 <Tab >

 <Panel ModuleName="DTSWalker" TargetIID="detail" />

 </Tab>

 <Tab >

 <Panel ModuleName="DTSSearch" TargetIID="detail" />

 </Tab>

 </TabPanel>

 <Divider />

 <TabPanel Placement="t" >

 <Tab Label="Details" >

 <Panel ModuleName="DTSDetail" IID="detail" />

 </Tab>

 </TabPanel>

 </MultiPanel>

 <Panel ModuleName="DTSStatus" />

 </MultiPanel> </PanelLayout>

</Layout>

file:///C:/Users/Program%20Files%20(x86)/Apelon/DTS%203.6/bin/editor/dtslayout.xml

